Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Effect of Selenization Temperature on the Structure and Optical Band Gap of MoSe2 Thin Films

Wu Si-man Tao Si-min Ji Ai-chuang Guan Shao-hang Xiao Jian-rong

Citation:

The Effect of Selenization Temperature on the Structure and Optical Band Gap of MoSe2 Thin Films

Wu Si-man, Tao Si-min, Ji Ai-chuang, Guan Shao-hang, Xiao Jian-rong
PDF
Get Citation
  • In recent years, MoSe2, as a kind of transition metal dichalcogenides have been attracting a wide range of research interests due to its special crystal structure which exhibits different electrical and optical properties. The band gap of molybdenum diselenide can be manipulated by different layers, strain engineering, doping, or the formation of heterostructures, which makes it potentially advantageous in optoelectronic devices and photovoltaic applications. In this work, we investigate the effect of selenization temperature on the structure and optical properties of the MoSe2 films. Molybdenum (Mo) thin films were prepared by RF magnetron sputtering, and then MoSe2 thin films were generated by selenization annealing. The surface morphology, crystal structure, and optical bandgap of the MoSe2 thin films were characterized and analyzed using scanning electron microscopy, X-ray diffraction, and ultraviolet visible spectroscopy, respectively. The results show that the crystal structure of the MoSe2 thin films is closely related to the selenization temperature (Ts): with the increase of selenization temperature, the average grain size of the thin films decreases slightly and then increases rapidly (from 24.82 nm to 55.76 nm). Meanwhile, the (002) crystal plane of MoSe2 also exhibits preferential growth with increasing temperature. The MoSe2 thin films have a low absorption rate for short-wavelength light (around 600 nm). With the increase of selenization temperature, the bandgap wave of the MoSe2 thin films is blue-shifted, and the optical bandgap decreases. The reason is that different selenization temperatures cause changes in the lattice size of MoSe2, thereby affecting the spatial expansion of its electronic wave function. In addition, the structure and optical bandgap of MoSe2 can be effectively controlled by changing the selenization temperature, which provides more possibilities for the MoSe2 thin films in the application of optical devices.
  • [1]

    Monga D, Sharma S, Shetti N P, Basu S, Reddy K R,Mater. Today Chem. 19 100399

    [2]

    Zhou W, Gong H M, Jin X H, Chen Y, Li H M,Liu S 2022 Front. Physics 10 842789

    [3]

    Kaur R, Singh K,Tripathi S 2022 J.Alloy. Compd. 905 164103

    [4]

    Cui Z, Wang H X, Shen Y, Qin K, Yuan P,Li E L 2024 Mater. Today Phys. 40 101317

    [5]

    Li F, Xu B, Yang W, Qi Z Y, Ma C, Wang Y J, Zhang X H, Luo Z R, Liang D L,Li D 2020 Nano Res. 13 1053

    [6]

    Yan Q J, Cheng J X, Wang W K, Sun M J, Yin Y L, Peng Y H, Zhou W C,Tang D S 2022 J. Phys.-Condes. Matter 34 475703

    [7]

    Zhao P, Cheng R, Zhao L, Yang H J,Jiang Z Y 2023 J. Appl. Phys. 134 134302

    [8]

    Kalkan S B, Najafidehaghani E, Gan Z, Apfelbeck F A C, Hübner U, George A, Turchanin A,Nickel B 2021 npj 2D Mater. Appl. 5 92

    [9]

    Deng L M, Si J S, Wu X C,Zhang W B 2022 Acta Phys. Sin. 71 147101 (in Chinese) [邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报71 147101]

    [10]

    Guo Qiang H, Rui Z, Wen Jing Z, Na C, Xiao Jun Y,Hong Bo L 2022 Acta Phys. Sin. 71 017104 (in Chinese) [郝国强,张瑞,张文静,陈娜,叶晓军,李红波 2022 物理学报71 017104]

    [11]

    Zhang Q Y, Mei L, Cao X H, Tang Y X,Zeng Z Y 2020 J. Mater. Chem. A 8 15417

    [12]

    Li Y G, Kuang G Z, Jiao Z J, Yao L,Duan R H 2022 Mater. Res. Express 9 122001

    [13]

    Wei Y, Hu C, Li Y, Hu X, Yu K, Sun L, Hohage M,Sun L 2020 Nanotechnology 31 315710

    [14]

    Chen L, Wang J F, Li X J, Zhao C R, Hu X, Wu Y,He Y M 2022 Inorg. Chem. Front. 9 2714

    [15]

    Vanathi V, Sathishkumar M, Kannan S,Balamurugan A 2024 Mater. Lett. 356 135595

    [16]

    Li J C, Yan W J, Lv Y H, Leng J, Zhang D, Coileáin C Ó, Cullen C P, Stimpel-Lindner T, Duesberg G S,Cho J 2020 RSC Adv. 10 1580

    [17]

    ZHAN W Y, ZOU J P, Xu M, Lei T,WEI H M 2023 Trans. Nonferrous Met. Soc. China 33 2483

    [18]

    Zhu X B, Jiang X, Yao X Y, Leng Y X, Xu X X, Peng A P, Wang L P,Xue Q J 2019 ACS Appl. Mater. Interfaces 11 45726

    [19]

    Yaqub T B, Vuchkov T, Sanguino P, Polcar T,Cavaleiro A 2020 Coatings 10 133

    [20]

    Yaqub T B, Kannur K H, Vuchkov T, Pupier C, Héau C,Cavaleiro A 2020 Mater. Lett. 275 128035

    [21]

    Li N, Liu Z T, Feng L P,Jia R T 2016 Surf. Eng. 32 299

    [22]

    Mao X, Li Z Q, Zou J P, Zhao G Y, Li D N,Song Z Q 2019 Appl. Surf. Sci. 487 719

    [23]

    Wu Q, Fu X, Yang K, Wu H, Liu L, Zhang L, Tian Y, Yin L-J, Huang W-Q,Zhang W 2021 ACS Nano 15 4481

    [24]

    Franklin A D 2015 Science 349 704

    [25]

    Chang Y S, Chen C Y, Ho C J, Cheng C M, Chen H R, Fu T Y, Huang Y T, Ke S W, Du H Y,Lee K Y 2021 Nano Energy 84 105922

    [26]

    Thureja D, Imamoglu A, Smoleński T, Amelio I, Popert A, Chervy T, Lu X, Liu S, Barmak K,Watanabe K 2022 Nature 606 298

    [27]

    Chouki T, Donkova B, Aktarla B, Stefanov P,Emin S 2021 Mater. Today Commun. 26 101976

    [28]

    Upadhyay S,Pandey O 2021 J. Alloy. Compd. 857 157522

    [29]

    Jäger-Waldau A, Lux-Steiner M, Jäger-Waldau R, Burkhardt R,Bucher E 1990 Thin Solid Films 189 339

    [30]

    Li J,Zhu J 2007 Acta Phys. Sin. 56 574 (in Chinese) [李 健,朱 洁 2007 物理学报 56 574]

    [31]

    Mao Q N, Zhang X Y, Li X G, He J X, Yu P R,Wang D 2014 Acta Phys. Sin. 63 118802 (in Chinese) [毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 物理学报63 118802]

    [32]

    Sharma C, Srivastava A K,Gupta M K 2023 Physica B 669 415290

    [33]

    Zeng F, Kong W, Liang Y, Li F, Lvtao Y, Su Z, Wang T, Peng B, Ye L,Chen Z 2023 Adv. Mater. 35 2306051

    [34]

    Mittal H, Raza M,Khanuja M 2023 MethodsX 11 102409

    [35]

    Kandar S, Bhatt K, Kumar N, Kapoor A K,Singh R 2024 ACS Appl. Nano Mater. 7 8212

    [36]

    Tao S M, Ma J F, Liu J J, Wang Y R,Xiao J R 2024 Int. J. Hydrog. Energy 58 829

    [37]

    Ohtake A,Sakuma Y 2021 J. Phys. Chem. C 125 11257

    [38]

    Shi N X, Liu G Z, Xi B J, An X G, Sun C H,Xiong S L 2024 Nano Res. 17 4023

    [39]

    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z,Ringe E 2014 ACS Nano 8 5125

    [40]

    Zhao S, Lu M, Xue S, Yan L, Miao P, Hang Y, Wang X, Liu Z, Wang Y,Tao L 2019 arXiv preprint arXiv:1904.09789

    [41]

    Ahmad Y H, Kamand F Z, Zekri A, Chae K-J, Aïssa B,Al-Qaradawi S Y 2023 Appl. Surf. Sci. 626 157205

    [42]

    Liu H L, Yang T, Chen J H, Chen H W, Guo H H, Saito R, Li M Y,Li L J 2020 Sci Rep 10 15282

    [43]

    Wang Z, Chen Y F, Wu P S, Ye J F, Peng M, Yan Y, Zhong F, He T, Wang Y,Xu M J 2020 Infrared Phys. Technol. 106 103272

    [44]

    Huang J W, Luo L Q, Jin B, Chu S J,Peng R F 2017 Acta Phys. Sin. 66 137801 (in Chinese) [黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 物理学报66 137801]

    [45]

    Zhang X L, Zhou J, Li S Q, Wang Y Y, Zhang S P, Liu Y L, Gao J F, Zhao J J, Wang W P,Yu R C 2021 J. Phys. Chem. Lett. 12 5879

  • [1] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, doi: 10.7498/aps.63.116701
    [2] Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui. Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films. Acta Physica Sinica, doi: 10.7498/aps.62.208102
    [3] Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Gao Yan-Qing, Zhao Shou-Ren, Wang Shan-Li, Chu Jun-Hao. Effects of different substrates and CdCl2 treatment on the properties of CdS thin films deposited by magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.62.158107
    [4] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.62.036801
    [5] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, doi: 10.7498/aps.62.056804
    [6] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, doi: 10.7498/aps.61.206803
    [7] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.60.067304
    [8] Cao Yue-Hua, Di Guo-Qing. Analysis of Y2O3 doped TiO2 films topography prepared by radio frequency magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.60.037702
    [9] Di Guo-Qing. Surface morphology and optical properties of Ta2O5 films prepared by radio frequency sputtering. Acta Physica Sinica, doi: 10.7498/aps.60.038101
    [10] Zhong Zheng-Xiang, Zheng Jia-Gui, Zhong Yong-Qiang, Yang Fan, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Bing, Lei Zhi, Li Wei, Wu Li-Li. The influence of doposition conditions on the structrure of ZnTe/ZnTe:Cu thin films and the properties of CdTe cells. Acta Physica Sinica, doi: 10.7498/aps.58.4920
    [11] Ding Wan-Yu, Xu Jun, Lu Wen-Qi, Deng Xin-Lu, Dong Chuang. An XPS study on the structure of SiNx film deposited by microwave ECR magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.58.4109
    [12] Jia Lu, Xie Er-Qing, Pan Xiao-Jun, Zhang Zhen-Xing. Optical properties of amorphous GaN films deposited by sputtering. Acta Physica Sinica, doi: 10.7498/aps.58.3377
    [13] Deng Jin-Xiang, Wang Xu-Yang, Yao Qian, Zhou Tao, Zhang Xiao-Kang. Optical band gap of cubic boron nitride thin films deposited by sputtering. Acta Physica Sinica, doi: 10.7498/aps.57.6631
    [14] Xiao Jian-Rong, Xu Hui, Guo Ai-Min, Wang Huan-You. Study on FN-DLC thin films: (Ⅱ) effect of radio frequency power on the optical band gap of the thin films. Acta Physica Sinica, doi: 10.7498/aps.56.1809
    [15] Xiao Jian-Rong, Xu Hui, Li Yan-Feng, Li Ming-Jun. Effect of nitrogen pressure on structure and optical band gap of copper nitride thin films. Acta Physica Sinica, doi: 10.7498/aps.56.4169
    [16] The effect of temperature of substrate and oxygen partial pressure on V2O5 films fabricated by magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.56.7255
    [17] . Acta Physica Sinica, doi: 10.7498/aps.51.406
    [18] Ye Chao, Ning Zhao-Yuan, Cheng Shan-Hua, Wang Xiang-Ying. . Acta Physica Sinica, doi: 10.7498/aps.51.2640
    [19] Yang Shen-Dong, Ning Zhao-Yuan, Huang Feng, Cheng Shan-Hua, Ye Chao. . Acta Physica Sinica, doi: 10.7498/aps.51.1321
    [20] Xie Da-Tao, Zhao-Xie, Wang Li-Fang, Zhu Feng, Quan Sheng-Wen, Meng Tie-Jun, Zhang Bao-Cheng, Chen Jia-Er. . Acta Physica Sinica, doi: 10.7498/aps.51.1377
Metrics
  • Abstract views:  190
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Available Online:  04 September 2024

/

返回文章
返回