Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials

Ma Teng-Yu Li Wan-Jun He Xian-Wang Hu Hui Huang Li-Juan Zhang Hong Xiong Yuan-Qiang Li Hong-Lin Ye Li-Juan Kong Chun-Yang

Citation:

Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials

Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang
PDF
HTML
Get Citation
  • Gallium oxide (Ga2O3) nanomaterials have great potential in the fields of ultraviolet transparent electrodes, high-temperature gas sensors, solar blind ultraviolet detectors and power devices, while achieving Ga2O3 nanomaterials with high crystalline quality and controllable size and morphology still remains challenge. Herein, size-controllable Gallium oxide hydroxide (GaOOH) nanorods, nanorod bundles, and spindles were prepared by hydrothermal method. After high temperature calcination, GaOOH nanomaterials were successfully transformed into higher-quality single-crystal β-Ga2O3 nanomaterials which well retained the morphological characteristics of the pristine GaOOH.With the help of X-ray diffraction (XRD), Raman scattering spectroscopy (Raman) and field emission scanning electron microscope (FE-SEM), we systematically studied the influence of the pH value and the concentration of anionic surfactants in the precursor solution on the crystal structure and surface morphology of GaOOH and β-Ga2O3 nanomaterials, and explored the different growth mechanism of GaOOH nanomaterials under different conditions. Simultaneously, room temperature photoluminescence (PL) tests revealed that β-Ga2O3 nanomaterials with different morphologies exhibit typical broad blue-green emission and sharp red emission, which are closely related to the existence of intrinsic defects in nanomaterials.The above research results provide valuable information for the controllable preparation of high-quality β-Ga2O3 nanomaterials.
      Corresponding author: Li Wan-Jun, liwj@cqnu.edu.cn ; Zhang Hong, zhh_2016@163.com
    [1]

    Pearton S J, Yang J C, CaryP H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M, Simmons J A 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [3]

    Mastro M A, KuramataA, Calkins J, Kim J, Ren F, Pearton S J 2017 ECS J. Solid State Sci. Technol. 6 356Google Scholar

    [4]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Kumar M, Kuma S, Kumar V, Singh R 2019 Gallium Oxide (1st Ed.) (Amsterdam: Elsevier) pp91–115

    [6]

    Muruganandham M, Amutha R, Wahed M S M A, Ahmmad B, Kuroda Y, Suri R P S, Wu J J, Sillanpää M E T 2012 J. Phys. Chem. C 116 44Google Scholar

    [7]

    Lin H J, Gao H Y, Gao P X 2017 Appl. Phys. Lett. 110 043101Google Scholar

    [8]

    Xia Z B, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y W, Brenner M, Lodha S, Rajan S 2018 IEEE Electron Device Lett. 39 568Google Scholar

    [9]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [10]

    马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322Google Scholar

    Ma L H, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322Google Scholar

    [11]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao HY, Dong JJ, Zheng Z Y, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar

    [12]

    Xie C, Lu X T, Ma M R, Tong X W, Zhang Z X, Wang L, Wu C Y, Yang W H, Luo L B 2019 Adv. Opt. Mater. 7 1901257Google Scholar

    [13]

    Liu J, Lu W, Zhong Q, Wu H Z, Li Y L, Li L L, Wang Z L 2018 J. Colloid Interface Sci. 519 255Google Scholar

    [14]

    Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar

    [15]

    Ho Q D, Frauenheim T, Deák P 2018 Phys. Rev. B 97 115163Google Scholar

    [16]

    Qian H S, Gunawan P, Zhang Y X, Lin G F, Zheng J W, Xu R 2008 Cryst. Growth Des. 8 1282Google Scholar

    [17]

    Song Y P, Zhang H Z, Lin C, Zhu Y W, Li G H, Yang F H, Yu D P 2004 Phys. Rev. B 69 075304Google Scholar

    [18]

    Pilliadugula R, Krishnan N G 2018 Mater. Res. Express 6 025027Google Scholar

    [19]

    Yao Y Z, Ishikawa Y, Sugawara Y 2019 J. Appl. Phys. 126 205106Google Scholar

    [20]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312Google Scholar

    [21]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [22]

    Namba Y, Heidarpour E, Nakayama M 1992 J. Appl. Phys. 72 1748Google Scholar

    [23]

    Zhao Y Y, Frost R L, Yang J, Martens W N 2008 J. Phys. Chem. C 112 3568

    [24]

    Shan J J, Li C H, Wu J M, Liu J A, Shi Y S 2017 Ceram. Int. 43 6430Google Scholar

    [25]

    Dulda A 2016 Adv. Mater. Sci. Eng. 2016 1

    [26]

    Bae H J, Yoo T H, Yoon Y, Lee I G, Kim J P, Cho B J, Hwang W S 2018 Nanomaterials 8 594Google Scholar

    [27]

    Krehula S, Ristić M, Kubuki S, Iida Y, Fabián M, Musić S 2015 J. Alloys Compd. 620 217Google Scholar

    [28]

    Quan Y, Fang D, Zhang X Y, Liu S Q, Huang K L 2010 Mater. Chem. Phys. 121 142Google Scholar

    [29]

    Sun Z Z, Feng X M, Hou W H 2007 Nanotechnology 18 455607Google Scholar

    [30]

    Qi X F, Song Y H, ShengY, Zhang H G, Zhao H, Shi Z, Zou H F 2014 Opt. Mater. 38 193Google Scholar

    [31]

    Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar

    [32]

    Yan S C, Wan L J, Li Z S, Zhou Y, Zou Z G 2010 Chem. Commun. 46 6388Google Scholar

    [33]

    Yang H Q, Shi R Y, Yu J, Liu R N, Zhang R G, Zhao H, Zhang L H, Zheng H R 2009 J. Phys. Chem. C 113 21548Google Scholar

    [34]

    Cao L, Li M K, Yang Z, Wei Q, Zhang W 2008 Appl. Phys. A 91 415

    [35]

    Tien L C, Chen W T, Ho C H 2011 J. Am. Ceram. Soc. 94 3117Google Scholar

    [36]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001Google Scholar

    [37]

    Jiang J L, Zhang J 2020 Ceram. Int. 46 2409Google Scholar

    [38]

    Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J, Tang C C 2013 J. Lumin. 140 30Google Scholar

    [39]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [40]

    Nogales E, Méndez B, Piqueras J 2005 Appl. Phys. Lett. 86 113112Google Scholar

  • 图 1  不同pH值和SDBS浓度下样品的XRD图谱 (a) GaOOH; (b) β-Ga2O3

    Figure 1.  XRD patterns of samples under different pH values and SDBS concentrations: (a) GaOOH; (b) β-Ga2O3.

    图 2  不同pH值和SDBS浓度下β-Ga2O3样品的Raman图谱

    Figure 2.  Raman spectra of β-Ga2O3samples at different pH values and SDBS concentrations.

    图 3  不同pH值下β-Ga2O3样品的SEM (a), (d) pH = 5; (b), (e) pH = 7; (c), (f) pH = 9; (g)—(i)长度分布图

    Figure 3.  Typical SEM images of β-Ga2O3 at different pH values of (a), (d) pH = 5, (b), (e) pH = 7 and (c), (f) pH = 9; (g)—(i) length distribution.

    图 4  在pH = 5时加入SDBS后β-Ga2O3样品的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i)长度分布图

    Figure 4.  Typical SEM images of β-Ga2O3 added with SDBS at pH = 5: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i) length distribution.

    图 5  在pH = 9时加入SDBS后β-Ga2O3样品的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i)长度分布图

    Figure 5.  Typical SEM images of β-Ga2O3 added with SDBS at pH = 9: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i) length distribution.

    图 6  不同pH值和SDBS浓度下GaOOH的生长机理

    Figure 6.  Growth mechanism of GaOOH at different pH and SDBS concentrations.

    图 A1  不同pH值下GaOOH纳米材料的SEM (a), (d) pH = 5; (b), (e) pH = 7; (c), (f) pH = 9

    Figure A1.  Typical SEM images of GaOOH at different pH values: (a), (d) pH = 5; (b), (e) pH = 7; (c), (f) pH = 9.

    图 A3  在pH = 9时加入SDBS后GaOOH纳米材料的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L

    Figure A3.  Typical SEM images of GaOOH added with SDBS at pH = 9: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L.

    图 7  不同生长条件下β-Ga2O3的室温光致发光谱 (a) 不同pH; (b) pH = 5加入SDBS; (c) pH = 9加入SDBS

    Figure 7.  Room temperature PL of β-Ga2O3: (a) Different pH values without SDBS; (b) with different concentrations of SDBS at pH = 5; (c) with different concentrations of SDBS at pH = 9.

    图 A2  在pH = 5时加入SDBS后GaOOH纳米材料的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L

    Figure A2.  Typical SEM images of GaOOH added with SDBS at pH = 5: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L.

  • [1]

    Pearton S J, Yang J C, CaryP H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M, Simmons J A 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [3]

    Mastro M A, KuramataA, Calkins J, Kim J, Ren F, Pearton S J 2017 ECS J. Solid State Sci. Technol. 6 356Google Scholar

    [4]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Kumar M, Kuma S, Kumar V, Singh R 2019 Gallium Oxide (1st Ed.) (Amsterdam: Elsevier) pp91–115

    [6]

    Muruganandham M, Amutha R, Wahed M S M A, Ahmmad B, Kuroda Y, Suri R P S, Wu J J, Sillanpää M E T 2012 J. Phys. Chem. C 116 44Google Scholar

    [7]

    Lin H J, Gao H Y, Gao P X 2017 Appl. Phys. Lett. 110 043101Google Scholar

    [8]

    Xia Z B, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y W, Brenner M, Lodha S, Rajan S 2018 IEEE Electron Device Lett. 39 568Google Scholar

    [9]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [10]

    马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322Google Scholar

    Ma L H, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322Google Scholar

    [11]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao HY, Dong JJ, Zheng Z Y, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar

    [12]

    Xie C, Lu X T, Ma M R, Tong X W, Zhang Z X, Wang L, Wu C Y, Yang W H, Luo L B 2019 Adv. Opt. Mater. 7 1901257Google Scholar

    [13]

    Liu J, Lu W, Zhong Q, Wu H Z, Li Y L, Li L L, Wang Z L 2018 J. Colloid Interface Sci. 519 255Google Scholar

    [14]

    Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar

    [15]

    Ho Q D, Frauenheim T, Deák P 2018 Phys. Rev. B 97 115163Google Scholar

    [16]

    Qian H S, Gunawan P, Zhang Y X, Lin G F, Zheng J W, Xu R 2008 Cryst. Growth Des. 8 1282Google Scholar

    [17]

    Song Y P, Zhang H Z, Lin C, Zhu Y W, Li G H, Yang F H, Yu D P 2004 Phys. Rev. B 69 075304Google Scholar

    [18]

    Pilliadugula R, Krishnan N G 2018 Mater. Res. Express 6 025027Google Scholar

    [19]

    Yao Y Z, Ishikawa Y, Sugawara Y 2019 J. Appl. Phys. 126 205106Google Scholar

    [20]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312Google Scholar

    [21]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [22]

    Namba Y, Heidarpour E, Nakayama M 1992 J. Appl. Phys. 72 1748Google Scholar

    [23]

    Zhao Y Y, Frost R L, Yang J, Martens W N 2008 J. Phys. Chem. C 112 3568

    [24]

    Shan J J, Li C H, Wu J M, Liu J A, Shi Y S 2017 Ceram. Int. 43 6430Google Scholar

    [25]

    Dulda A 2016 Adv. Mater. Sci. Eng. 2016 1

    [26]

    Bae H J, Yoo T H, Yoon Y, Lee I G, Kim J P, Cho B J, Hwang W S 2018 Nanomaterials 8 594Google Scholar

    [27]

    Krehula S, Ristić M, Kubuki S, Iida Y, Fabián M, Musić S 2015 J. Alloys Compd. 620 217Google Scholar

    [28]

    Quan Y, Fang D, Zhang X Y, Liu S Q, Huang K L 2010 Mater. Chem. Phys. 121 142Google Scholar

    [29]

    Sun Z Z, Feng X M, Hou W H 2007 Nanotechnology 18 455607Google Scholar

    [30]

    Qi X F, Song Y H, ShengY, Zhang H G, Zhao H, Shi Z, Zou H F 2014 Opt. Mater. 38 193Google Scholar

    [31]

    Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar

    [32]

    Yan S C, Wan L J, Li Z S, Zhou Y, Zou Z G 2010 Chem. Commun. 46 6388Google Scholar

    [33]

    Yang H Q, Shi R Y, Yu J, Liu R N, Zhang R G, Zhao H, Zhang L H, Zheng H R 2009 J. Phys. Chem. C 113 21548Google Scholar

    [34]

    Cao L, Li M K, Yang Z, Wei Q, Zhang W 2008 Appl. Phys. A 91 415

    [35]

    Tien L C, Chen W T, Ho C H 2011 J. Am. Ceram. Soc. 94 3117Google Scholar

    [36]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001Google Scholar

    [37]

    Jiang J L, Zhang J 2020 Ceram. Int. 46 2409Google Scholar

    [38]

    Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J, Tang C C 2013 J. Lumin. 140 30Google Scholar

    [39]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [40]

    Nogales E, Méndez B, Piqueras J 2005 Appl. Phys. Lett. 86 113112Google Scholar

  • [1] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
Metrics
  • Abstract views:  12321
  • PDF Downloads:  400
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2020
  • Accepted Date:  09 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回