-
Mechanoluminescent (ML) materials have mechanical-light conversion properties and can generate luminescence under mechanical stress, which makes the ML materials have high application value in optical information display. In this work, the crystal structure and defect distribution are adjusted by changing the K+/Na+ ratio of the ferroelectric matrix KxNa1–xNbO3∶0.5%Pr3+ (KxNNOP), and the effects of K+ content on the photoluminescence (PL) and ML properties are systematically investigated. The research results indicate that as the K+ content increases, the symmetry of the crystal is enhanced, leading the PL intensity of the KxNNOP samples to decrease. It is worth noting that the emission peaks caused by the 3P1→3H5 and 3P0→3H5 transition at the Pr3+ electron level appear in the PL spectra of the components with higher K+ content under the light excitation of 450 nm, which is attributed to the different energy level positions of the internal valence electron charge transfer states within Pr-O-Nb, caused by the change in the distance between Pr3+ and Nb5+. Under the compressive stress, the KxNNOP (x = 0, 0.01, 0.02, 0.1) components exhibit the bright red ML, and the ML intensity increases with the K+ content increasing. The K0.1NNOP component exhibits the highest ML intensity emission. In particular, the ML behavior has the characteristics of repeatability and recoverability. The trap energy levels in the KxNNOP samples are investigated by thermoluminescence curves, revealing that the enhancement of ML in K0.1NNOP may be related to the differences in trap density and trap depth, caused by changes in K+ content. Based on these results, a model is established to elucidate the possible ML mechanism in KxNNOP.
-
Keywords:
- mechanoluminescence /
- ferroelectric /
- KxNa1–xNbO3:Pr3+ /
- defect distribution /
- photoluminescence
[1] Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Zhang Y, Liu H, Pan C, Wang Z L 2015 Adv. Mater. 27 2324Google Scholar
[2] Jeong S M, Song S, Lee S K, Choi B 2013 Appl. Phys. Lett. 102 051110Google Scholar
[3] Terasaki N, Yamada H, Xu C N 2013 Catal. Today. 201 203Google Scholar
[4] Jeong S M, Song S, Lee S. K, Ha NY 2013 Adv. Mater. 25 6194Google Scholar
[5] Jeong S M, Song S, Joo K I, Kim J, Hwang S H, Jeong J, Kim H 2014 Energy Environ. Sci. 7 3338Google Scholar
[6] Peng D, Chen B, Wang F J 2015 ChemPlusChem. 80 1209Google Scholar
[7] Chen B, Zhang X, Wang F J 2021 Acc. Mater. Res. 2 364Google Scholar
[8] Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 2414Google Scholar
[9] Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 1236Google Scholar
[10] Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Wang Z L 2015 Advanced Materials 27 2324
[11] Chandra V, Chandra B, Jha P J 2013 Appl. Phys. Lett. 102 241105Google Scholar
[12] Wang X, Yamada H, Xu C N. 2005 Appl. Phys. Lett. 86 022905Google Scholar
[13] Zhang J C, Pan C, Zhu Y F, Zhao L Z, He H W, Liu X, Qiu J 2018 Adv. Mater. 30 1804644Google Scholar
[14] Wei Y, Wu Z, Jia Y, Wu J, Shen Y, Luo H 2014 Appl. Phys. Lett. 105 042902Google Scholar
[15] Egerton L, Dillon D M 1959 J. Am. Ceram. 42 438Google Scholar
[16] Shirane G, Newnham R, Pepinsky R 1954 Phys. Rev. 96 581Google Scholar
[17] Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W J 2006 Mater. Sci. Eng. , B 131 83Google Scholar
[18] Fan X H, Zhang J C, Zhang M, Pan C, Yan X, Han W P, Zhang H D, Long Y Z, Wang X J 2017 Opt. Express 25 14238Google Scholar
[19] Zhang J C, Fan X H, Yan X, Xia F, Kong W, Long Y Z, Wang X J 2018 Acta Mater. 152 148
[20] Feng A, Smet P F 2018 Materials 11 484Google Scholar
[21] Wang F, Liu X 2009 Chem. Soc. Rev. 38 976Google Scholar
[22] Tennery V J, Hang K W 1968 J. Appl. Phy. 39 4749Google Scholar
[23] Wells M, Megaw H D 1961 Proc. Phys. Soc. 78 1258Google Scholar
[24] Zhang Q, Luo L, Gong J, Du P, Li W P, Yuan G L 2020 J. Eur. 40 3946
[25] Wang J, Luo L J 2018 J. Am. Ceram. Soc. 101 400Google Scholar
[26] Kakimoto K I, Sumi T, Kagomiya I 2010 Jpn J. Appl. Phys. 49 09MD10Google Scholar
[27] Chen T, Liang R, Li Y, Zhou Z, Dong X J 2017 J. Am. Ceram. Soc. 100 1065Google Scholar
[28] Pinel E, Boutinaud P, Mahiou R J 2004 J. Alloys Compd. 380 225Google Scholar
[29] Dorenbos P 2017 Opt. Mater. 69 8Google Scholar
[30] Barandiarán Z, Meijerink A, Seijo L J 2015 Phys. Chem. Chem. Phys. 17 19874Google Scholar
[31] Sun H, Zhang Q, Wang X, Bulin C 2015 J. Am. Ceram. Soc. 98 601Google Scholar
[32] Zhang Q, Sun H, Zhang Y 2014 Jo. Am. Ceram. Soc. 97 868Google Scholar
[33] Newman D J, Ng B 2000 Crystal Field Handbook (Cambridge: Cambridge University Press)
[34] Diallo P, Boutinaud P, Mahiou R, Cousseins J 1997 Phys. Status Solidi A 160 255Google Scholar
[35] Li K, Xue D 2006 J. Phys. Chem. A 110 11332Google Scholar
[36] Lecointre A, Bessière A, Bos A, Dorenbos P, Viana B, Jacquart S 2011 J. Phys. Chem. C 115 4217Google Scholar
[37] Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M, Gourier D, Richard C, Scherman D 2011 J. Am. Chem. Soc. 133 11810Google Scholar
[38] Van den eeckhout K, Bos A J, Poelman D, Smet P F 2013 Phys. Rev. B 87 045126Google Scholar
[39] Shalgaonkar C, Narlikar A 1972 J. Mater. Sci. 7 1465Google Scholar
[40] Sakai R, Katsumata T, Komuro S, Morikawa T 1999 J. Lumin. 85 149Google Scholar
[41] Kang F, Yang X, Peng M, Wondraczek L, Ma Z, Zhang Q, Qiu J 2014 J. Phys. Chem. C 118 7515Google Scholar
[42] Kang F, Zhang H, Wondraczek L, Yang X, Zhang Y, Lei D Y, Peng M 2016 Chem. Mater. 28 2692
[43] Gao Y, Huang F, Lin H, Zhou J, Xu J, Wang Y 2016 Adv. Funct. Mater. 26 3139Google Scholar
[44] Akiyama M, Xu C N, Matsui H, Nonaka K, Watanabe T 1999 Appl. Phys. Lett. 75 2548Google Scholar
[45] Matsui H, Xu C N, Akiyama M, Watanabe T 2000 Jpn. J. Appl. Phys. 39 6582Google Scholar
[46] Zhang H, Yamada H, Terasaki N, Xu C N 2007 Appl. Phys. Lett. 91 081905Google Scholar
[47] Fu X, Zheng S, Shi J, Zhang H J 2017 J. Lumin. 192 117Google Scholar
[48] Shigemi A, Wada T 2004 Jpn. J. Appl. Phys. 43 6793Google Scholar
[49] Wu X, Lin J, Xu Z, Zhao C, Lin C, Wang H, Zhai J 2021 Laser Photonics Rev. 15 2100211Google Scholar
[50] Boutinaud P, Sarakha L, Mahiou R 2008 Phys. Condens. Matter 21 025901Google Scholar
[51] Xie T, Guo H, Zhang J, He Y, Lin H, Chen G, Zheng Z 2016 J Lumine. 170 150Google Scholar
[52] Zhang J C, Long Y Z, Yan X, Wang X, Wang F 2016 Chem. Mater. 28 4052Google Scholar
[53] Chandra B P, Chandra V K, Jha P 2015 Phys. B: Condens. Matter 461 38Google Scholar
-
图 2 (a) KxNNOP 样品的 XRD图谱; (b) 2θ在44º—48º范围内的放大图; (c) NNOP, (d) K0.5NNOP 样品的 Rietveld结构精修图; (e) 晶格常数随x的变化
Figure 2. (a) XRD patterns of KxNNOP samples; (b) magnified view of 2θ in the range 44º–48º; rietveld structural refinement plot of (c) NNOP, (d) K0.5NNOP sample; (e) change of lattice constants with x.
图 4 (a) KxNNOP样品的PLE (λem = 612 nm)光谱, 插图是310—410 nm范围内放大归一化的 PLE光谱; (b) KxNNOP样品的PL (λex = 335 nm)光谱, 插图为1D2→3H4发射峰的相对强度与K+含量x的关系; (c) PL (λex = 450 nm) 光谱; (d) KxNNOP样品中的IVCT能级高度与
$ {\mathrm{\chi }}_{\mathrm{o}\mathrm{p}\mathrm{t}}\left({\mathrm{N}\mathrm{b}}^{5+}\right) $ /$d({\mathrm{P}\mathrm{r}}^{3+}\text{-}{\mathrm{N}\mathrm{b}}^{5+})$ 变化关系; (e) 能级位置坐标图, 其中ΔE 是从3P0能级和 IVCT 能级的交叉处到3P0 能级底部之间的距离Figure 4. (a) PLE (λem = 612 nm) spectra of KxNNOP samples, the inset is the magnified normalized PLE spectrum in the 310-410 nm range; (b) PL (λex = 335 nm) spectra of KxNNOP samples, the inset is the relationship between the relative intensity of the 1D2→3H4 emission peak and the K+ content x; (c) PL (λex = 450 nm) spectra; (d) relationship between IVCT energy in KxNNOP samples and
$ {\mathrm{\chi }}_{\mathrm{o}\mathrm{p}\mathrm{t}}\left({\mathrm{N}\mathrm{b}}^{5+}\right) $ /$d({\mathrm{P}\mathrm{r}}^{3+}\text{-}{\mathrm{N}\mathrm{b}}^{5+})$ ; (e) configurational coordinate diagram, ΔE is the distance from the intersection of the 3P0 energy level and the IVCT energy level to the bottom of the 3P0 energy level.图 5 (a) K0.1NNOP 样品的ML, AG和PL光谱, 插图为相应样品的发光图像; (b) KxNNOP (x = 0, 0.01, 0.02, 0.1)复合圆柱体在压缩载荷下的ML响应; (c) K0.1NNOP复合圆柱体在连续负载下的ML强度衰减曲线; (d) 紫外光照射后ML的可恢复性; (e) K0.1NNOP样品重复测试4次的ML曲线
Figure 5. (a) ML, AG and PL spectra of K0.1NNOP sample, insets are images of various luminescence for corresponding samples; (b) ML responses under compressive load of KxNNOP (x = 0, 0.01, 0.02, 0.1) composite cylinders; (c) ML intensity decay curve under consecutive load of K0.1NNOP composite cylinder; (d) recoverability of ML after UV light irradiation; (e) ML curve of K0.1NNOP sample repeated 4 times.
表 1 KxNa1–xNbO3∶Pr3+ (x = 0, 0.01, 0.02, 0.1, 0.3, 0.5)样品Rietveld结构精修参数
Table 1. Rietveld structural refinement parameters of KxNa1–xNbO3∶Pr3+ (x = 0, 0.01, 0.02, 0.1, 0.3, 0.5) samples
Samples x = 0 x = 0.01 x = 0.02 x = 0.1 x = 0.3 x = 0.5 Space
groupP21ma Amm2 Amm2 Amm2 Amm2 Amm2 a /Å 5.5690 3.9517 3.9016 3.9187 3.9354 3.9639 b/Å 7.7900 5.6027 5.5446 5.6186 5.6020 5.6570 c /Å 5.5180 5.6589 5.5893 5.5678 5.6316 5.6886 V/Å3 239.39 125.29 120.91 122.59 124.16 127.56 Rp/% 0.08 0.24 0.28 0.21 0.24 0.15 Rwp/% 0.06 0.16 0.20 0.17 0.17 0.11 表 2 KxNNOP样品计算得到的IVCT能级高度
Table 2. Calculated IVCT energy heights in KxNNOP samples.
Composition χopt (Nb5+) d (Pr3+-Nb5+)/Å EIVCT/cm–1 x = 0 1.862 3.18 29640 x = 0.02 1.862 3.32 30870 x = 0.1 1.862 3.31 30786 x = 0.3 1.862 3.34 31037 x = 0.5 1.862 3.37 31284 -
[1] Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Zhang Y, Liu H, Pan C, Wang Z L 2015 Adv. Mater. 27 2324Google Scholar
[2] Jeong S M, Song S, Lee S K, Choi B 2013 Appl. Phys. Lett. 102 051110Google Scholar
[3] Terasaki N, Yamada H, Xu C N 2013 Catal. Today. 201 203Google Scholar
[4] Jeong S M, Song S, Lee S. K, Ha NY 2013 Adv. Mater. 25 6194Google Scholar
[5] Jeong S M, Song S, Joo K I, Kim J, Hwang S H, Jeong J, Kim H 2014 Energy Environ. Sci. 7 3338Google Scholar
[6] Peng D, Chen B, Wang F J 2015 ChemPlusChem. 80 1209Google Scholar
[7] Chen B, Zhang X, Wang F J 2021 Acc. Mater. Res. 2 364Google Scholar
[8] Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 2414Google Scholar
[9] Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 1236Google Scholar
[10] Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Wang Z L 2015 Advanced Materials 27 2324
[11] Chandra V, Chandra B, Jha P J 2013 Appl. Phys. Lett. 102 241105Google Scholar
[12] Wang X, Yamada H, Xu C N. 2005 Appl. Phys. Lett. 86 022905Google Scholar
[13] Zhang J C, Pan C, Zhu Y F, Zhao L Z, He H W, Liu X, Qiu J 2018 Adv. Mater. 30 1804644Google Scholar
[14] Wei Y, Wu Z, Jia Y, Wu J, Shen Y, Luo H 2014 Appl. Phys. Lett. 105 042902Google Scholar
[15] Egerton L, Dillon D M 1959 J. Am. Ceram. 42 438Google Scholar
[16] Shirane G, Newnham R, Pepinsky R 1954 Phys. Rev. 96 581Google Scholar
[17] Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W J 2006 Mater. Sci. Eng. , B 131 83Google Scholar
[18] Fan X H, Zhang J C, Zhang M, Pan C, Yan X, Han W P, Zhang H D, Long Y Z, Wang X J 2017 Opt. Express 25 14238Google Scholar
[19] Zhang J C, Fan X H, Yan X, Xia F, Kong W, Long Y Z, Wang X J 2018 Acta Mater. 152 148
[20] Feng A, Smet P F 2018 Materials 11 484Google Scholar
[21] Wang F, Liu X 2009 Chem. Soc. Rev. 38 976Google Scholar
[22] Tennery V J, Hang K W 1968 J. Appl. Phy. 39 4749Google Scholar
[23] Wells M, Megaw H D 1961 Proc. Phys. Soc. 78 1258Google Scholar
[24] Zhang Q, Luo L, Gong J, Du P, Li W P, Yuan G L 2020 J. Eur. 40 3946
[25] Wang J, Luo L J 2018 J. Am. Ceram. Soc. 101 400Google Scholar
[26] Kakimoto K I, Sumi T, Kagomiya I 2010 Jpn J. Appl. Phys. 49 09MD10Google Scholar
[27] Chen T, Liang R, Li Y, Zhou Z, Dong X J 2017 J. Am. Ceram. Soc. 100 1065Google Scholar
[28] Pinel E, Boutinaud P, Mahiou R J 2004 J. Alloys Compd. 380 225Google Scholar
[29] Dorenbos P 2017 Opt. Mater. 69 8Google Scholar
[30] Barandiarán Z, Meijerink A, Seijo L J 2015 Phys. Chem. Chem. Phys. 17 19874Google Scholar
[31] Sun H, Zhang Q, Wang X, Bulin C 2015 J. Am. Ceram. Soc. 98 601Google Scholar
[32] Zhang Q, Sun H, Zhang Y 2014 Jo. Am. Ceram. Soc. 97 868Google Scholar
[33] Newman D J, Ng B 2000 Crystal Field Handbook (Cambridge: Cambridge University Press)
[34] Diallo P, Boutinaud P, Mahiou R, Cousseins J 1997 Phys. Status Solidi A 160 255Google Scholar
[35] Li K, Xue D 2006 J. Phys. Chem. A 110 11332Google Scholar
[36] Lecointre A, Bessière A, Bos A, Dorenbos P, Viana B, Jacquart S 2011 J. Phys. Chem. C 115 4217Google Scholar
[37] Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M, Gourier D, Richard C, Scherman D 2011 J. Am. Chem. Soc. 133 11810Google Scholar
[38] Van den eeckhout K, Bos A J, Poelman D, Smet P F 2013 Phys. Rev. B 87 045126Google Scholar
[39] Shalgaonkar C, Narlikar A 1972 J. Mater. Sci. 7 1465Google Scholar
[40] Sakai R, Katsumata T, Komuro S, Morikawa T 1999 J. Lumin. 85 149Google Scholar
[41] Kang F, Yang X, Peng M, Wondraczek L, Ma Z, Zhang Q, Qiu J 2014 J. Phys. Chem. C 118 7515Google Scholar
[42] Kang F, Zhang H, Wondraczek L, Yang X, Zhang Y, Lei D Y, Peng M 2016 Chem. Mater. 28 2692
[43] Gao Y, Huang F, Lin H, Zhou J, Xu J, Wang Y 2016 Adv. Funct. Mater. 26 3139Google Scholar
[44] Akiyama M, Xu C N, Matsui H, Nonaka K, Watanabe T 1999 Appl. Phys. Lett. 75 2548Google Scholar
[45] Matsui H, Xu C N, Akiyama M, Watanabe T 2000 Jpn. J. Appl. Phys. 39 6582Google Scholar
[46] Zhang H, Yamada H, Terasaki N, Xu C N 2007 Appl. Phys. Lett. 91 081905Google Scholar
[47] Fu X, Zheng S, Shi J, Zhang H J 2017 J. Lumin. 192 117Google Scholar
[48] Shigemi A, Wada T 2004 Jpn. J. Appl. Phys. 43 6793Google Scholar
[49] Wu X, Lin J, Xu Z, Zhao C, Lin C, Wang H, Zhai J 2021 Laser Photonics Rev. 15 2100211Google Scholar
[50] Boutinaud P, Sarakha L, Mahiou R 2008 Phys. Condens. Matter 21 025901Google Scholar
[51] Xie T, Guo H, Zhang J, He Y, Lin H, Chen G, Zheng Z 2016 J Lumine. 170 150Google Scholar
[52] Zhang J C, Long Y Z, Yan X, Wang X, Wang F 2016 Chem. Mater. 28 4052Google Scholar
[53] Chandra B P, Chandra V K, Jha P 2015 Phys. B: Condens. Matter 461 38Google Scholar
Catalog
Metrics
- Abstract views: 4103
- PDF Downloads: 81
- Cited By: 0