-
In recent years, inorganic multifunctional ferroelectric ceramics have been widely utilized in various fields, including aerospace, optical communication, and capacitors, owing to their high stability, easy synthesis, and flexibility. Rare-earth doped ferroelectric materials hold immense potential as a new type of inorganic multifunctional material. This work focuses on the synthesis of x%Sm3+-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (BNTBT:x%Sm3+ in short) ceramics by using the conventional solid-state sintering method, aiming to comprehensively investigate their ferroelectric, energy storage, and photoluminescence (PL) properties. The X-ray diffraction analysis reveals that the introduction of Sm3+ does not trigger off the appearing of secondary phases or changing of the original perovskite structure. The scanning electron microscope (SEM) images demonstrate that Sm3+ incorporation effectively restrains the grain growth in BNTBT, resulting in the average grain size decreasing from 1.16 to 0.95 μm. The reduction in remanent polarization (Pr) and coercive field (Ec) can be attributed to both the grain size refinement and the formation of morphotropic phase boundaries (MPBs). Under an applied field of 60 kV/cm, the maximum value of energy storage density (Wrec) reaches to 0.27 J/cm3 at an Sm3+ doping concentration of 0.6%. The energy storage efficiency (η) gradually declines with electric field increasing and stabilizes at approximately 45% for Sm3+ doping concentrations exceeding 0.6%. This result can be ascribed to the decrease in ΔP (Pmax – Pr) due to the growth of ferroelectric domains as the electric field increases. Additionally, all Sm3+-doped BNTBT ceramics exhibit outstanding PL performance upon being excited with near-ultraviolet (NUV) light at 408 nm, without peak position shifting. The PL intensity peaks when the Sm3+ doping concentration is 1.0%, with a relative change (ΔI/I) reaching to 700% at 701 nm (4G5/2→6H11/2). However, the relative change in PL intensity is minimum at 562 nm (4G5/2→6H5/2) due to the fact that the 4G5/2→6H5/2 transition represents a magnetic dipole transition, and the PL intensity remains relatively stable despite variations in the crystal field environment surrounding Sm3+. Our successful synthesis of this novel ceramic material, endowed with both energy storage and PL properties, offers a promising avenue for developing inorganic multifunctional materials. The Sm3+-doped BNTBT ceramics hold considerable potential applications in optical memory and multifunctional capacitors.
-
Keywords:
- rare earth /
- ferroelectric /
- energy storage /
- photoluminescence
[1] Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278
Google Scholar
[2] Guo P F, Su L, Peng K, Lu D, Xu L, Li M Z, Wang H J 2022 ACS Nano 16 6625
Google Scholar
[3] Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519
Google Scholar
[4] Nazir H, Batool M, Osorio F J B, Isaza-Ruiz M, Xu X H, Vignarooban K, Phelan P, Inamuddin, Kannan A M 2019 Int. J. Heat Mass Transfer 129 491
Google Scholar
[5] Wen Q B, Qu F M, Yu Z J, Graczyk Zajac M, Xiong X, Riedel R 2022 J. Adv. Ceram. 11 197
Google Scholar
[6] Yu R, Zhang H L, Guo B L 2022 Nano-Micro Lett. 14 1
Google Scholar
[7] Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620
Google Scholar
[8] Zhang X Q, Zhang K Q, Zhang B, Li Y, He R J 2022 J. Adv. Ceram. 11 1918
Google Scholar
[9] 包定华 2020 物理学报 69 127712
Google Scholar
Bao D H 2020 Acta Phys. Sin. 69 127712
Google Scholar
[10] Zhu D Y, Nikl M, Chewpraditkul W, Li J 2022 J. Adv. Ceram. 11 1825
Google Scholar
[11] Zou H, Yu Y, Li J, Cao Q F, Wang X S, Hou J W 2015 Mater. Res. Bull. 69 112
Google Scholar
[12] Hao S L, Li J H, Sung Q B, Wei L L, Yang Z P 2019 J. Mater. Sci. -Mater. Electron. 30 13372
Google Scholar
[13] Hao S L, Li J H, Yang P, Wei L L, Yang Z P 2017 J. Am. Ceram. Soc. 100 5620
Google Scholar
[14] He J Y, Zhang J J, Xing H J, Pan H L, Jia X R, Wang J Y, Zheng P 2017 Ceram. Int. 43 250
Google Scholar
[15] Jia Q, Zhang Q, Sun H, Hao X 2021 J. Eur. Ceram. Soc. 41 1211
Google Scholar
[16] Jia Q N, Li Y, Guan L L, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Sci. -Mater. Electron. 31 19277
Google Scholar
[17] Hui X W, Peng D F, Zou H, Li J, Cao Q F, Li Y X, Wang X S, Yao X 2014 Ceram. Int. 40 12477
Google Scholar
[18] Li W, Wang Z, Hao J G, Fu P, Du J, Chu R Q, Xu Z J 2018 J. Mater. Chem. C 6 11312
Google Scholar
[19] Liu Y, Luo H, Zhai D, Zeng L, Xiao Z, Hu Z, Wang X, Zhang D 2022 ACS Appl. Mater. Interfaces 14 19376
Google Scholar
[20] Qin Y L, Zhang S J, Wu Y Q, Lu C J, Zhang J L 2017 J. Eur. Ceram. Soc. 37 3493
Google Scholar
[21] Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026
Google Scholar
[22] Cao R P, Wang W H, Ren Y, Hu Z F, Zhou X C, Xu Y C, Luo Z Y, Liang A H 2021 J. Lumin. 235 118054
Google Scholar
[23] Sun H Q, Liu J, Wang X S, Zhang Q W, Hao X H, An S L 2017 J. Mater. Chem. C 5 9080
Google Scholar
[24] Lü J W, Li Q, Li Y, Tang M Y, Jin D L, Yan Y, Fan B Y, Jin L, Liu G 2021 Chem. Eng. J. 420 129900
Google Scholar
[25] Du P, Yu J S 2015 Ceram. Int. 41 6710
Google Scholar
[26] Said S, Marchet P, Merle Mejean T, Mercurio J P 2004 Mater. Lett. 58 1405
Google Scholar
[27] Choi H, Cho S H, Khan S, Lee K R, Kim S 2014 J. Mater. Chem. C 2 6017
Google Scholar
[28] Lun M M, Wang W, Xing Z F, Wan Z, Wu W Y, Song H Z, Wang Y Z, Li W, Chu B L, He Q Y 2019 J. Am. Ceram. Soc. 102 5243
Google Scholar
[29] Xue J P, Noh H M, Choi B C, Park S H, Kim J H, Jeong J H, Du P 2020 Chem. Eng. J. 382 122861
Google Scholar
[30] Li F F, Liu Y F, Lyu Y N, Qi Y H, Yu Z L, Lu C G 2017 Ceram. Int. 43 106
Google Scholar
[31] Han K, Luo N N, Chen Z P, Ma L, Chen X Y, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562
Google Scholar
[32] Zhang M H, Qi J L, Liu Y Q, Lan S, Luo Z X, Pan H, Lin Y H 2022 Rare Metals 41 730
Google Scholar
[33] Huang Y, Zhao C, Wu B, Zhang X 2022 J. Eur. Ceram. Soc. 42 2764
Google Scholar
[34] Muthuramalingam M, Ruth D E J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scr. Mater. 112 58
Google Scholar
[35] Zheng M, Guan P, Ji X 2023 CrystEngComm 25 541
Google Scholar
[36] Guan P F, Zhang Y X, Yang J, Zheng M 2023 Ceram. Int. 49 11796
Google Scholar
[37] Ma C L, Wang X Y, Tan W S, Zhou W P, Wang X X, Cheng Z Z, Chen G B, Zhai Z Y 2020 Dalton Trans. 49 5581
Google Scholar
[38] Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778
Google Scholar
[39] Zhang Y M, Liang G C, Tang S L, Peng B L, Zhang Q, Liu L J, Sun W H 2020 Ceram. Int. 46 1343
Google Scholar
[40] 杜金华, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703
Google Scholar
Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703
Google Scholar
[41] Wei T, Sun F C, Zhao C Z, Li C P, Yang M, Wang Y Q 2013 Ceram. Int. 39 9823
Google Scholar
[42] Singh V, Watanabe S, Rao T K G, Chubaci J F D, Kwak H Y 2010 J. Non-Cryst. Solids 356 1185
Google Scholar
[43] Raju G S R, Pavitra E, Patnam H, Varaprasad G L, Chodankar N R, Patil S J, Ranjith K S, Rao M V B, Yu J S, Park J Y, Huh Y S, Han Y K 2022 J. Alloys Compd. 903 163881
Google Scholar
-
图 5 (a) BNTBT:0.2%Sm3+陶瓷PL激发光谱; (b) 不同掺杂浓度在408 nm光激发下的发射光谱; (c) 不同发射峰的PL强度变化图; (d) ΔI/I图
Figure 5. (a) PLE spectrum of BNTBT:0.2%Sm3+ ceramic; (b) PL spectrum under 408 nm excitation with diverse doping concentrations; (c) the PL intensity change diagram at different emission peaks; (d) the diagram of ΔI/I.
-
[1] Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278
Google Scholar
[2] Guo P F, Su L, Peng K, Lu D, Xu L, Li M Z, Wang H J 2022 ACS Nano 16 6625
Google Scholar
[3] Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519
Google Scholar
[4] Nazir H, Batool M, Osorio F J B, Isaza-Ruiz M, Xu X H, Vignarooban K, Phelan P, Inamuddin, Kannan A M 2019 Int. J. Heat Mass Transfer 129 491
Google Scholar
[5] Wen Q B, Qu F M, Yu Z J, Graczyk Zajac M, Xiong X, Riedel R 2022 J. Adv. Ceram. 11 197
Google Scholar
[6] Yu R, Zhang H L, Guo B L 2022 Nano-Micro Lett. 14 1
Google Scholar
[7] Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620
Google Scholar
[8] Zhang X Q, Zhang K Q, Zhang B, Li Y, He R J 2022 J. Adv. Ceram. 11 1918
Google Scholar
[9] 包定华 2020 物理学报 69 127712
Google Scholar
Bao D H 2020 Acta Phys. Sin. 69 127712
Google Scholar
[10] Zhu D Y, Nikl M, Chewpraditkul W, Li J 2022 J. Adv. Ceram. 11 1825
Google Scholar
[11] Zou H, Yu Y, Li J, Cao Q F, Wang X S, Hou J W 2015 Mater. Res. Bull. 69 112
Google Scholar
[12] Hao S L, Li J H, Sung Q B, Wei L L, Yang Z P 2019 J. Mater. Sci. -Mater. Electron. 30 13372
Google Scholar
[13] Hao S L, Li J H, Yang P, Wei L L, Yang Z P 2017 J. Am. Ceram. Soc. 100 5620
Google Scholar
[14] He J Y, Zhang J J, Xing H J, Pan H L, Jia X R, Wang J Y, Zheng P 2017 Ceram. Int. 43 250
Google Scholar
[15] Jia Q, Zhang Q, Sun H, Hao X 2021 J. Eur. Ceram. Soc. 41 1211
Google Scholar
[16] Jia Q N, Li Y, Guan L L, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Sci. -Mater. Electron. 31 19277
Google Scholar
[17] Hui X W, Peng D F, Zou H, Li J, Cao Q F, Li Y X, Wang X S, Yao X 2014 Ceram. Int. 40 12477
Google Scholar
[18] Li W, Wang Z, Hao J G, Fu P, Du J, Chu R Q, Xu Z J 2018 J. Mater. Chem. C 6 11312
Google Scholar
[19] Liu Y, Luo H, Zhai D, Zeng L, Xiao Z, Hu Z, Wang X, Zhang D 2022 ACS Appl. Mater. Interfaces 14 19376
Google Scholar
[20] Qin Y L, Zhang S J, Wu Y Q, Lu C J, Zhang J L 2017 J. Eur. Ceram. Soc. 37 3493
Google Scholar
[21] Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026
Google Scholar
[22] Cao R P, Wang W H, Ren Y, Hu Z F, Zhou X C, Xu Y C, Luo Z Y, Liang A H 2021 J. Lumin. 235 118054
Google Scholar
[23] Sun H Q, Liu J, Wang X S, Zhang Q W, Hao X H, An S L 2017 J. Mater. Chem. C 5 9080
Google Scholar
[24] Lü J W, Li Q, Li Y, Tang M Y, Jin D L, Yan Y, Fan B Y, Jin L, Liu G 2021 Chem. Eng. J. 420 129900
Google Scholar
[25] Du P, Yu J S 2015 Ceram. Int. 41 6710
Google Scholar
[26] Said S, Marchet P, Merle Mejean T, Mercurio J P 2004 Mater. Lett. 58 1405
Google Scholar
[27] Choi H, Cho S H, Khan S, Lee K R, Kim S 2014 J. Mater. Chem. C 2 6017
Google Scholar
[28] Lun M M, Wang W, Xing Z F, Wan Z, Wu W Y, Song H Z, Wang Y Z, Li W, Chu B L, He Q Y 2019 J. Am. Ceram. Soc. 102 5243
Google Scholar
[29] Xue J P, Noh H M, Choi B C, Park S H, Kim J H, Jeong J H, Du P 2020 Chem. Eng. J. 382 122861
Google Scholar
[30] Li F F, Liu Y F, Lyu Y N, Qi Y H, Yu Z L, Lu C G 2017 Ceram. Int. 43 106
Google Scholar
[31] Han K, Luo N N, Chen Z P, Ma L, Chen X Y, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562
Google Scholar
[32] Zhang M H, Qi J L, Liu Y Q, Lan S, Luo Z X, Pan H, Lin Y H 2022 Rare Metals 41 730
Google Scholar
[33] Huang Y, Zhao C, Wu B, Zhang X 2022 J. Eur. Ceram. Soc. 42 2764
Google Scholar
[34] Muthuramalingam M, Ruth D E J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scr. Mater. 112 58
Google Scholar
[35] Zheng M, Guan P, Ji X 2023 CrystEngComm 25 541
Google Scholar
[36] Guan P F, Zhang Y X, Yang J, Zheng M 2023 Ceram. Int. 49 11796
Google Scholar
[37] Ma C L, Wang X Y, Tan W S, Zhou W P, Wang X X, Cheng Z Z, Chen G B, Zhai Z Y 2020 Dalton Trans. 49 5581
Google Scholar
[38] Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778
Google Scholar
[39] Zhang Y M, Liang G C, Tang S L, Peng B L, Zhang Q, Liu L J, Sun W H 2020 Ceram. Int. 46 1343
Google Scholar
[40] 杜金华, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703
Google Scholar
Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703
Google Scholar
[41] Wei T, Sun F C, Zhao C Z, Li C P, Yang M, Wang Y Q 2013 Ceram. Int. 39 9823
Google Scholar
[42] Singh V, Watanabe S, Rao T K G, Chubaci J F D, Kwak H Y 2010 J. Non-Cryst. Solids 356 1185
Google Scholar
[43] Raju G S R, Pavitra E, Patnam H, Varaprasad G L, Chodankar N R, Patil S J, Ranjith K S, Rao M V B, Yu J S, Park J Y, Huh Y S, Han Y K 2022 J. Alloys Compd. 903 163881
Google Scholar
Catalog
Metrics
- Abstract views: 2565
- PDF Downloads: 59
- Cited By: 0