-
AbstractMicro-displacement actuators have important applications in aerospace, semiconductor, industry and other fields. Now most of the lead-based piezoelectric ceramics are used in the market. In consideration of environmental protection and legal restriction, it is urgent to develop lead-free ceramic materials with excellent electrostrictive properties. As a kind of ABO3-type ferroelectrics, (Ba,Ca)(Ti,Zr)O3 lead-free ceramics have attracted a lot of attention because of their high piezoelectricity. In this work, (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) ceramics with high electrostrictive coefficient are prepared by the solid-state method. The effects of sintering temperature on the structures and electrical properties of BCTZ ceramics are studied. The results show that the sintering temperature can help to improve density and grain growth of BCTZ ceramic.There are no impurity phases in the BCTZ ceramic systems, and all samples show ABO3-type perovskite structures. At room temperature, the crystal structure of BCTZ ceramic forms coexistence of orthogonal (O)-tetragonal (T) phase. The dielectric peak of BCTZ ceramic is widened, and the Curie temperature reaches a maximum value of 110 ℃ when Ts = 1300 ℃. With the increase of sintering temperature, the dielectric peak of BCTZ ceramic gradually becomes narrowed, and the Curie temperature of ceramic moves toward low temperature.As the sintering temperature is 1300 ℃, the grain size of BCTZ ceramic is 1 μm, the large electrostrictive coefficient Q33 (5.84 × 10–2 m4/C2) can be obtained, which is about twice that of traditional PZT ceramic. This may be attributed to combination of the surface effect caused by grain size of BCTZ ceramic with the strong ionic nature of A-O chemical bond. In addition, although BCTZ ceramic has an O-T phase boundary near room temperature, the electrostrictive coefficient Q33 of ceramic has good temperature stability in a range of 25–100 ℃. It shows that the crystal phase and temperature have no effect on the electrostrictive coefficient of BCTZ lead-free ceramic. It provides a new idea for designing the high electrostrictive properties of lead-free piezoelectric ceramics with potential applications.
-
Keywords:
- lead-free piezoceramics /
- (Ba,Ca)(Ti,Zr)O3 /
- surface effect /
- electrostrictive coefficients
[1] Panda P K 2009 J. Mater. Sci. 44 5049Google Scholar
[2] Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693Google Scholar
[3] Wada S, Nitta M, Kumada N, Tanaka D, Furukawa M, Ohno S, Moriyoshi C, Kuroiwa Y 2008 Jpn. J. Appl. Phys. 47 7678Google Scholar
[4] Huang Y, Zhao C, Wu B, Wu J 2020 ACS Appl. Mater. Interfaces 12 23885Google Scholar
[5] Habib M, Lqbal M J, Lee M H, Kim D, Akram F, Gul M, Zeb A, Rehman I U, Kim M H, Song T K 2022 Mater. Res. Bull. 146 111571Google Scholar
[6] Liu Z G, Tang Z H, Hu S C, Yao D J, Sun F, Chen D Y, Guo X B, Liu Q X, Jiang Y P, Tang X G 2020 J. Mater. Chem. C 8 13405Google Scholar
[7] Jaita P, Jarupoom P 2021 J. Asian Ceram. Societies 9 975Google Scholar
[8] Duraisamy D, Venkatesan G N 2020 Sens. Actuators, A 315 112307Google Scholar
[9] Wu W J, Ma J, Wang N N, Shi C Y, Chen K, Zhu Y L, Chen M, Wu B 2020 J. Alloys Compd. 814 152240Google Scholar
[10] Ni H M, Luo L H, Li W P, Zhu Y J, Luo H S 2011 J. Alloys Compd. 509 3958Google Scholar
[11] Cao W P, Sheng J, Liu Z, Gao C, Wang Z H, Wang J, Chang J, Wang Z, Li W L 2020 Mod. Phys. Lett. B 34 2050100Google Scholar
[12] Varade P, Pandey A H, Gupta S M, Venkataramani N, Kulkarni A R 2020 Appl. Phys. Lett. 117 212901Google Scholar
[13] Chen K, Ma J, Wu J, Wang X Y, Miao F, Huang Y, Shi C Y, Wu W J, Wu B 2020 J. Mater. Sci.-Mater. Electron. 31 12292Google Scholar
[14] Tsai C C, Liao W H, Chu S Y, Hong C S, Yu M C, Wei Z Y, Lin Y Y 2021 Ceram. Int. 47 7207Google Scholar
[15] Wang P, Li Y X, Lu Y Q 2011 J. Eur. Ceram. Soc. 31 2005Google Scholar
[16] Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602Google Scholar
[17] Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar
[18] Dai Z H, Xie J L, Chen Z B, Zhou S, Liu J J, Liu W G, Xi Z Z, Ren X B 2021 Chem. Eng. J. 410 128341Google Scholar
[19] Li F, Jin L, Guo R 2014 Appl. Phys. Lett. 105 232903Google Scholar
[20] Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G 2016 ACS Appl. Mater. Interfaces 8 31109Google Scholar
[21] Xiao F, Ma W, Sun Q, Huan Z, Li J, Tang C 2013 J. Mater. Sci. - Mater. Electron. 24 2653Google Scholar
[22] Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar
[23] Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar
[24] 陈小明, 王明焱, 唐木智明, 李国荣 2021 物理学报 70 197701Google Scholar
Chen X M, Wang M Y, Karaki T, Li G R 2021 Acta Phys. Sin. 70 197701Google Scholar
[25] Yu Z, Ang C, Guo R, Bhalla A S 2007 Mater. Lett. 61 326Google Scholar
[26] Yu Z, Ang C, Guo R, Bhalla A S 2002 J. Appl. Phys. 92 2655Google Scholar
[27] Sciau P, Calvarin G, Ravez J 1999 Solid State Commun. 113 77Google Scholar
[28] Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163Google Scholar
[29] Mastelaro V R, Favarim H R, Mesquita A, Michalowicz A, Moscovici J, Eiras J A 2015 Acta Mater. 84 164Google Scholar
[30] Känzig W 1955 Phys. Rev. 98 549Google Scholar
[31] Cross L E 1996 Mater. Chem. Phys. 43 108Google Scholar
[32] Zhang S T, Kounga A B, Aulbach E, Ehrenberg H, Rödel J 2007 Appl. Phys. Lett. 91 112906Google Scholar
[33] Guo Y, Gu M, Luo H, Liu Y, Withers R L 2011 Phys. Rev. B 83 054118Google Scholar
[34] Yan K, Ren X 2014 J. Phys. D:Appl. Phys. 47 015309Google Scholar
[35] Li F, Jin L, Xu Z, Zhang S 2014 Appl. Phys. Rev. 1 011103Google Scholar
[36] Zuo R Z, Qi H, Fu J, Li J F, Shi M, Xu Y D 2016 Appl. Phys. Lett. 108 232904Google Scholar
[37] Haertling G H 1987 Ferroelectrics 75 25Google Scholar
[38] Weaver P M, Cain M G, Stewart M 2010 Appl. Phys. Lett. 96 142905Google Scholar
[39] Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716Google Scholar
[40] Bobnar V, Malič B, Holc J, Kosec M, Steinhausen R, Beige H 2005 J. Appl. Phys. 98 024113Google Scholar
[41] Li F, Jin L, Guo R P 2014 Appl. Phys. Lett. 105 232903
[42] Zuo R, Qi H, Fu J, Li J, Shi M, Xu Y 2016 Appl. Phys. Lett. 108 232904
[43] Ghosez P, Gonze X, Lambin P, Michenaud J P 1995 Phys. Rev. B 51 6765Google Scholar
[44] Ghosez P, Michenaud J P, Gonze X 1998 Phys. Rev. B 58 6224Google Scholar
[45] Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1Google Scholar
-
图 4 不同烧结温度下BCTZ陶瓷的介温曲线 (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃
Figure 4. Temperature dependence of dielectric properties for BCTZ ceramics: (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃.
图 6 不同烧结温度下BCTZ 陶瓷的S-P曲线: (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃
Figure 6. Strain versus polarization curves for BCTZ ceramics sintered at different temperatures: (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃.
表 1 不同烧结温度下BCTZ 陶瓷电致伸缩系数Q33
Table 1. Q33 as a function of sintering temperature for BCTZ ceramics.
Ts/℃ Q33/
(10–2 m4·C–2)R-square εr Average grain size/μm 1300 5.84 0.9772 1621 1 1350 3.51 0.9728 2870 2 1400 4.09 0.98768 2836 6 1450 4.27 0.98677 2781 12 1475 4.34 0.98067 2904 — 1500 4.47 0.98348 2776 14 表 2 不同测量温度下BCTZ 陶瓷电致伸缩系数Q33 (Ts = 1300 ℃; 1475 ℃)
Table 2. Q33 as a function of temperature for BCTZ ceramics (Ts = 1300 ℃; 1475 ℃).
T/℃ Ts = 1300 ℃
Q33/(10–2 m4·C–2)Ts = 1475 ℃
Q33/(10–2 m4·C–2)25 5.84 4.34 50 6.39 4.62 70 6.61 4.78 85 6.76 4.68 100 6.83 4.29 -
[1] Panda P K 2009 J. Mater. Sci. 44 5049Google Scholar
[2] Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693Google Scholar
[3] Wada S, Nitta M, Kumada N, Tanaka D, Furukawa M, Ohno S, Moriyoshi C, Kuroiwa Y 2008 Jpn. J. Appl. Phys. 47 7678Google Scholar
[4] Huang Y, Zhao C, Wu B, Wu J 2020 ACS Appl. Mater. Interfaces 12 23885Google Scholar
[5] Habib M, Lqbal M J, Lee M H, Kim D, Akram F, Gul M, Zeb A, Rehman I U, Kim M H, Song T K 2022 Mater. Res. Bull. 146 111571Google Scholar
[6] Liu Z G, Tang Z H, Hu S C, Yao D J, Sun F, Chen D Y, Guo X B, Liu Q X, Jiang Y P, Tang X G 2020 J. Mater. Chem. C 8 13405Google Scholar
[7] Jaita P, Jarupoom P 2021 J. Asian Ceram. Societies 9 975Google Scholar
[8] Duraisamy D, Venkatesan G N 2020 Sens. Actuators, A 315 112307Google Scholar
[9] Wu W J, Ma J, Wang N N, Shi C Y, Chen K, Zhu Y L, Chen M, Wu B 2020 J. Alloys Compd. 814 152240Google Scholar
[10] Ni H M, Luo L H, Li W P, Zhu Y J, Luo H S 2011 J. Alloys Compd. 509 3958Google Scholar
[11] Cao W P, Sheng J, Liu Z, Gao C, Wang Z H, Wang J, Chang J, Wang Z, Li W L 2020 Mod. Phys. Lett. B 34 2050100Google Scholar
[12] Varade P, Pandey A H, Gupta S M, Venkataramani N, Kulkarni A R 2020 Appl. Phys. Lett. 117 212901Google Scholar
[13] Chen K, Ma J, Wu J, Wang X Y, Miao F, Huang Y, Shi C Y, Wu W J, Wu B 2020 J. Mater. Sci.-Mater. Electron. 31 12292Google Scholar
[14] Tsai C C, Liao W H, Chu S Y, Hong C S, Yu M C, Wei Z Y, Lin Y Y 2021 Ceram. Int. 47 7207Google Scholar
[15] Wang P, Li Y X, Lu Y Q 2011 J. Eur. Ceram. Soc. 31 2005Google Scholar
[16] Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602Google Scholar
[17] Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar
[18] Dai Z H, Xie J L, Chen Z B, Zhou S, Liu J J, Liu W G, Xi Z Z, Ren X B 2021 Chem. Eng. J. 410 128341Google Scholar
[19] Li F, Jin L, Guo R 2014 Appl. Phys. Lett. 105 232903Google Scholar
[20] Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G 2016 ACS Appl. Mater. Interfaces 8 31109Google Scholar
[21] Xiao F, Ma W, Sun Q, Huan Z, Li J, Tang C 2013 J. Mater. Sci. - Mater. Electron. 24 2653Google Scholar
[22] Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar
[23] Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar
[24] 陈小明, 王明焱, 唐木智明, 李国荣 2021 物理学报 70 197701Google Scholar
Chen X M, Wang M Y, Karaki T, Li G R 2021 Acta Phys. Sin. 70 197701Google Scholar
[25] Yu Z, Ang C, Guo R, Bhalla A S 2007 Mater. Lett. 61 326Google Scholar
[26] Yu Z, Ang C, Guo R, Bhalla A S 2002 J. Appl. Phys. 92 2655Google Scholar
[27] Sciau P, Calvarin G, Ravez J 1999 Solid State Commun. 113 77Google Scholar
[28] Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163Google Scholar
[29] Mastelaro V R, Favarim H R, Mesquita A, Michalowicz A, Moscovici J, Eiras J A 2015 Acta Mater. 84 164Google Scholar
[30] Känzig W 1955 Phys. Rev. 98 549Google Scholar
[31] Cross L E 1996 Mater. Chem. Phys. 43 108Google Scholar
[32] Zhang S T, Kounga A B, Aulbach E, Ehrenberg H, Rödel J 2007 Appl. Phys. Lett. 91 112906Google Scholar
[33] Guo Y, Gu M, Luo H, Liu Y, Withers R L 2011 Phys. Rev. B 83 054118Google Scholar
[34] Yan K, Ren X 2014 J. Phys. D:Appl. Phys. 47 015309Google Scholar
[35] Li F, Jin L, Xu Z, Zhang S 2014 Appl. Phys. Rev. 1 011103Google Scholar
[36] Zuo R Z, Qi H, Fu J, Li J F, Shi M, Xu Y D 2016 Appl. Phys. Lett. 108 232904Google Scholar
[37] Haertling G H 1987 Ferroelectrics 75 25Google Scholar
[38] Weaver P M, Cain M G, Stewart M 2010 Appl. Phys. Lett. 96 142905Google Scholar
[39] Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716Google Scholar
[40] Bobnar V, Malič B, Holc J, Kosec M, Steinhausen R, Beige H 2005 J. Appl. Phys. 98 024113Google Scholar
[41] Li F, Jin L, Guo R P 2014 Appl. Phys. Lett. 105 232903
[42] Zuo R, Qi H, Fu J, Li J, Shi M, Xu Y 2016 Appl. Phys. Lett. 108 232904
[43] Ghosez P, Gonze X, Lambin P, Michenaud J P 1995 Phys. Rev. B 51 6765Google Scholar
[44] Ghosez P, Michenaud J P, Gonze X 1998 Phys. Rev. B 58 6224Google Scholar
[45] Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1Google Scholar
Catalog
Metrics
- Abstract views: 4938
- PDF Downloads: 91
- Cited By: 0