Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Objective image quality assessment based on image color appearance and gradient features

Shi Chen-Yang Lin Yan-Dan

Citation:

Objective image quality assessment based on image color appearance and gradient features

Shi Chen-Yang, Lin Yan-Dan
PDF
HTML
Get Citation
  • With the rapid development of color image contents and imaging devices in various kinds of multimedia communication systems, conventional grayscale counterparts are replaced by chromatic ones. Under such a transition, the image quality assessment (IQA) model needs to be built by subjective visual measurement, designed in accordance with the results, and applied to the related practical problems. Based on the visual perception characteristics, chromaticity and the structure feature information are quantified, and an objective IQA model combining the color appearance and the gradient image features is proposed in this paper, namely color appearance and gradient similarity(CAGS) model. Two new color appearance indices, vividness and depth, are selected to build the chromatic similarity map. The structure information is characterized by gradient similarity map. Vividness map plays two roles in the proposed model. One is utilized as feature extractor to compute the local quality of distorted image, and the other is as a weight part to reflect the importance of local domain. To quantify the specific parameters of CAGS, Taguchi method is used and four main parameters, i.e., KV, KD, KG and α, of this model are determined based on the statistical correlation indices. The optimal parameters of CAGS are KV = KD = 0.02, KG = 50, and α = 0.1. Furthermore, the CAGS is tested by utilizing 94 reference images and 4830 distorted images from the four open image databases (LIVE, CSIQ, TID2013 and IVC). Additionally, the influences of the 35 distortion types on IQA are analyzed. Massive experiments are performed on four publicly available benchmark databases between CAGS and other 10 state-of-the-art and recently published IQA models, for the accuracy, complexity and generalization performance of IQA. The experimental results show that the accuracy PLCC of the CAGS model can achieve 0.8455 at lowest and 0.9640 at most in the four databases, and the results about commonly evaluation criteria prove that the CAGS performs higher consistency with the subjective evaluations. Among the 35 distortion types, the two distortion types, namely contrast change and change of color saturation, CAGS and mostly IQA models have the worst influence on IQA, and the CAGS yields the highest top three rank number. Moreover, the SROCC values of CAGS for other distortion types are all larger than 0.6 and the number of SROCC value larger than 0.95 is 14 times. Besides, the CAGS maintains a moderate computational complexity. These results of test and comparison above show that the CAGS model is effective and feasible, and the corresponding model has an excellent performance.
      Corresponding author: Lin Yan-Dan, ydlin@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0403700)
    [1]

    姚军财, 刘贵忠 2018 物理学报 67 108702Google Scholar

    Yao J C, Liu G Z 2018 Acta Phys. Sin. 67 108702Google Scholar

    [2]

    Athar S, Wang Z 2019 IEEE Access 7 140030Google Scholar

    [3]

    Lin W S, Kuo C C J 2011 J. Vis. Commun. Image R. 22 297Google Scholar

    [4]

    Chang H W, Zhang Q W, Wu Q G, Gan Y 2015 Neurocomputing 151 1142Google Scholar

    [5]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600Google Scholar

    [6]

    Sheikh H R, Bovik A C 2006 IEEE Trans. Image Process. 15 430Google Scholar

    [7]

    Sheikh H R, Bovik A C, de Veciana G 2005 IEEE Trans. Image Process. 14 2117Google Scholar

    [8]

    Wang Z, Simoncelli E P, Bovik A C 2003 37th Asilomar Conference on Signals, Systems and Computer PacificGrove, CA, November 9−12, 2003 pp1398−1402

    [9]

    Wang Z, Li Q 2011 IEEE Trans. Image Process. 20 1185Google Scholar

    [10]

    Larson E C, Chandler D M 2010 J. Electron. Imaging 19 011006Google Scholar

    [11]

    Zhang L, Zhang L, Mou X Q 2010 IEEE International Conference on Image Processing Hong Kong, Peoples of China, September 26−29, 2010 pp321−324

    [12]

    Zhang L, Zhang L, Mou X Q, Zhang D 2011 IEEE Trans. Image Process. 20 2378Google Scholar

    [13]

    Liu A M, Lin W S, Narwaria M 2012 IEEE Trans. Image Process. 21 1500Google Scholar

    [14]

    Jia H Z, Zhang L, Wang T H 2018 IEEE Access 6 65885Google Scholar

    [15]

    姚军财, 申静 2020 物理学报 69 148702Google Scholar

    Yao J C, Shen J 2020 Acta Phys. Sin. 69 148702Google Scholar

    [16]

    Robertson A R 1990 Color Res. Appl. 15 167Google Scholar

    [17]

    Mahny M, Vaneycken L, Oosterlinck A 1994 Color Res. Appl. 19 105

    [18]

    Lee D, Plataniotis K N 2015 IEEE Trans. Image Process. 24 3950Google Scholar

    [19]

    Lee D, Plataniotis K N 2014 2014 International Conference on Acoustics, Speech and Signal Processing (ICASSP) Florence, Italy, May 4−9, 2014 pp166−170

    [20]

    Berns R S 2014 Color Res. Appl. 39 322Google Scholar

    [21]

    Zhang L, Shen Y, Li H Y 2014 IEEE Trans. Image Process. 23 4270Google Scholar

    [22]

    Jain R C, Kasturi R, Schunck B G 1995 Machine Vision (New York: McGraw-Hill) pp140–185

    [23]

    Sonka M, Hlavac V, Boyle R 2008 Image Processing, Analysis and Machine Vision (3rd Ed.) (Stanford: Cengage Learning) p77

    [24]

    Xue W F, Zhang L, Mou X Q, Bovik A C 2014 IEEE Trans. Image Process. 23 684Google Scholar

    [25]

    Kim D O, Han H S, Park R H 2010 IEEE Trans. Consum. Electr. 56 930Google Scholar

    [26]

    Nafchi H Z, Shahkolaei A, Hedjam R, Cheriet M 2016 IEEE Access 4 5579Google Scholar

    [27]

    Taguchi G, Yokoyama Y, Wu Y 1993 Taguchi Methods, Design of experiments (Dearbon, MI: ASI Press) pp59−63

    [28]

    Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F, Kuo C C J 2015 Signal Process. Image Commun. 30 57Google Scholar

    [29]

    Larson E C, Chandler D M http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23[2020-7-13]

    [30]

    Sheikh H R, Sabir M F, Bovik A C 2006 IEEE Trans. Image Process. 15 3440Google Scholar

    [31]

    Ninassi A, Le Callet P, Autrusseau F 2006 Conference on Human Vision and Electronic Imaging Ⅺ San Jose, CA, USA, January 16–18, 2006 p1

    [32]

    Wang S Q, Gu K, Zeng K, Wang Z, Lin W S 2016 Proc. SPIE 6057 Comput. Graph. Appl. 38 47Google Scholar

    [33]

    Lin C H, Wu C C, Yang P H, Kuo T Y 2009 J. Disp. Technol. 5 323Google Scholar

    [34]

    Preiss J, Fernandes F, Urban P 2014 IEEE Trans. Image Process. 23 1366Google Scholar

  • 图 1  颜色1和2的vividness($ V_{ab}^* $)和depth($ D_{ab}^* $)维度表征, 线段长度定义对应属性[20]

    Figure 1.  Dimensions of vividness, $ V_{ab}^* $, and depth, $ D_{ab}^* $ for colors 1 and 2. Line lengths define each attribute[20].

    图 2  从LIVE数据库中提取的典型图像 (a)为参考图像; (b)为高斯模糊畸变类型的失真图像; (c)和(e)分别是参考图像的Vividness和Depth图; (d)和(f)分别是失真图像的Vividness和Depth图; (g)是色貌相似图; (h)为梯度相似图

    Figure 2.  Typical images extracted from LIVE: (a) The reference image;(b) the distorted vision of it by Gaussian blur distortion type; (c) and (e) are the vividness and depth map of the reference image, respectively; (d) and (f) are the vividness and depth map of the distorted image; (g) the color appearance similarity map by connecting the vividness and depth similarity map; (h) the gradient similarity map.

    图 3  本文提出的IQA模型CAGS的计算过程

    Figure 3.  Illustration for the computational process of the proposed IQA model CAGS.

    图 4  SROCC和RMSE对应的不同水准的S/N

    Figure 4.  S/N ratio of different levels for SROCC and RMSE.

    图 5  不同KG值对模型性能的影响

    Figure 5.  Performance of different KG values.

    图 6  基于TID2013数据库的主观MOS与IQA模型计算结果拟合对比 (a) IW-SSIM; (b) IFC; (c) VIF; (d) MAD; (e) RFSIM; (f) FSIMc; (g) GSM; (h) CVSS; (i) CAGS

    Figure 6.  Scatter plots of subjective MOS against scores calculated by IQA models’ prediction for TID2013 databases: (a) IW-SSIM; (b) IFC; (c) VIF; (d) MAD; (e) RFSIM; (f) FSIMc; (g) GSM; (h) CVSS; (i) CAGS.

    图 7  CAGS与MPCC在TID2013数据库种不同失真类型PLCC值对比

    Figure 7.  PLCC comparison of different distortion types between CAGS and MPCC on TID2013.

    表 1  IQA数据库基本信息

    Table 1.  Benchmark test databases for IQA.

    数据库原始图像数量失真图像数量失真类型观察者
    TID201325300024971
    CSIQ30866635
    LIVE297795161
    IVC10185415
    DownLoad: CSV

    表 2  变量参数及其控制水准

    Table 2.  Influence factors and level setting for CAGS.

    代号参数表述水准数水准一水准二水准三
    AKV30.0020.020.2
    BKD30.0020.020.2
    CKG31050100
    Dα30.10.51
    DownLoad: CSV

    表 3  采用L9(34)直交表的实验设计及IVC数据库测试结果

    Table 3.  Design with a L9(34) orthogonal array for IVC database.

    实验序号ABCDSROCCSROCC的S/NRMSERMSE的S/N
    111110.9300–0.63030.41137.7168
    212220.9192–0.73180.45336.8723
    313330.9096–0.82300.48256.3301
    421230.9171–0.75170.45966.7524
    522310.9173–0.74980.46726.6099
    623120.9291–0.63880.41427.6558
    731320.9114–0.80580.47356.4936
    832130.9279–0.65000.41747.5890
    933210.9195–0.72900.44816.9725
    DownLoad: CSV

    表 4  对比不同IQA模型的4个数据库性能

    Table 4.  Performance comparison of IQA models on four databases.

    数据库SSIMIW-SSIMIFCVIFMADRFSIMFSIMCGSMCVSSMPCCProposed
    TID2013SROCC0.74170.77790.53890.67690.78070.77440.85100.79460.80690.84520.8316
    PLCC0.78950.83190.55380.77200.82670.83330.87690.84640.84060.86160.8445
    RMSE0.76080.68801.03220.78800.69750.68520.59590.66030.67150.62930.6639
    KROCC0.55880.59770.39390.51470.60350.59510.66650.62550.63310.6469
    CSIQSROCC0.87560.92130.76710.91950.94660.92950.93100.91080.95800.95690.9198
    PLCC0.86130.91440.83840.92770.95020.91790.91920.89640.95890.95860.9014
    RMSE0.13340.10630.14310.09800.08180.10420.10340.11640.07450.07470.1137
    KROCC0.69070.75290.58970.75370.79700.76450.76900.73740.81710.7487
    LIVESROCC0.94790.95670.92590.96360.96690.94010.95990.95610.96720.96600.9734
    PLCC0.94490.95220.92680.96040.96750.93540.95030.95120.96510.96220.9640
    RMSE8.94558.347310.26437.61376.90739.66427.19978.43277.15737.43978.3251
    KROCC0.79630.81750.75790.82820.84210.78160.83660.81500.84060.8658
    IVCSROCC0.90180.91250.89930.89640.91460.81920.92930.85600.88360.9195
    PLCC0.91190.92310.90930.90280.92100.83610.93920.86620.84380.9298
    RMSE0.49990.46860.50690.52390.47460.66840.41830.60880.65380.4483
    KROCC0.72230.73390.72020.71580.74060.64520.76360.66090.69570.7488
    权重平均SROCC0.80510.83760.65600.77500.84560.83060.88590.84380.86280.8737
    PLCC0.83210.86960.67860.83530.87520.86500.89870.87300.88200.8772
    KROCC0.62700.66620.50020.61580.68190.65750.71600.67750.70200.7044
    直接平均SROCC0.86680.89210.78280.86410.90220.86580.91780.87940.90390.9111
    PLCC0.87690.90540.80710.89070.91640.88070.92140.89010.90210.9099
    KROCC0.69200.72550.61540.70310.74580.69660.75890.70970.74660.7526
    DownLoad: CSV

    表 5  IQA模型的不同失真类型SROCC值对比

    Table 5.  SROCC values of IQA models for different types of distortions.

    数据库失真类型SSIMIW-SSIMIFCVIFMADRFSIMFSIMCGSMCVSSMPCCProposed
    TID2013AGN0.86710.84380.66120.89940.88430.88780.91010.90640.94010.86660.9359
    ANC0.77260.75150.53520.82990.80190.84760.85370.81750.86390.81870.8653
    SCN0.85150.81670.66010.88350.89110.88250.89000.91580.90770.73960.9276
    MN0.77670.80200.69320.84500.73800.83680.80940.72930.77150.70320.7526
    HFN0.86340.85530.74060.89720.88760.91450.90940.88690.90970.89570.9159
    IN0.75030.72810.62080.85370.27690.90620.82510.79650.74570.67470.8361
    QN0.86570.84680.62820.78540.85140.89680.88070.88410.88690.79310.8718
    GB0.96680.97010.89070.96500.93190.96980.95510.96890.93480.92180.9614
    DEN0.92540.91520.77790.89110.92520.93590.93300.94320.94270.95100.9466
    JPEG0.92000.91870.83570.91920.92170.93980.93390.92840.95210.89640.9585
    JP2 K0.94680.95060.90780.95160.95110.95180.95890.96020.95870.91600.9620
    JPTE0.84930.83880.74250.84090.82830.83120.86100.85120.86130.85710.8644
    J2 TE0.88280.86560.77690.87610.87880.90610.89190.91820.88510.84090.9250
    NEPN0.78210.80110.57370.77200.83150.77050.79370.81300.82010.77530.7833
    Block0.57200.37170.24140.53060.28120.03390.55320.64180.51520.53960.6015
    MS0.77520.78330.55220.62760.64500.55470.74870.78750.71500.75200.7441
    CTC0.37750.45930.17980.83860.19720.39890.46790.48570.29400.78140.4514
    CCS0.41410.41960.40290.30090.05750.02040.83590.35780.26140.70540.3711
    MGN0.78030.77280.61430.84860.84090.84640.85690.83480.87990.87660.8700
    CN0.85660.87620.81600.89460.90640.89170.91350.91240.93510.81740.9168
    LCNI0.90570.90370.81600.92040.94430.90100.94850.95630.96290.80950.9574
    ICQD0.85420.84010.60060.84140.87450.89590.88150.89730.91080.85960.9060
    CHA0.87750.86820.82100.88480.83100.89900.89250.88230.85230.80940.8768
    SSR0.94610.94740.88850.93530.95670.93260.95760.96680.96050.91780.9580
    CSIQAWGN0.89740.93800.84310.95750.95410.94410.93590.94400.96700.93290.9652
    JPEG0.95430.96620.94120.97050.96150.95020.96640.96320.96890.95640.9573
    JP2 K0.96050.96830.92520.96720.97520.96430.97040.96480.97770.96300.9545
    AGPN0.89240.90590.82610.95110.95700.93570.93700.93870.95160.95170.9492
    GB0.96080.97820.95270.97450.96020.96430.97290.95890.97890.96640.9574
    CTC0.79250.95390.48730.93450.92070.95270.94380.93540.93240.93990.9273
    LIVEJP2 K0.96140.96490.91130.96960.96760.93230.97240.97000.97190.96080.9822
    JPEG0.97640.98080.94680.98460.97640.95840.98400.97780.98360.96740.9836
    AWGN0.96940.96670.93820.98580.98440.97990.97160.97740.98090.94570.9837
    GB0.95170.97200.95840.97280.94650.90660.97080.95180.96620.95610.9641
    FF0.95560.94420.96290.96500.95690.92370.95190.94020.95920.96270.9633
    DownLoad: CSV

    表 6  计算复杂度对比

    Table 6.  Time cost comparisons.

    IQA模型运行时间/sIQA模型运行时间/s
    PSNR0.0186RFSIM0.1043
    SSIM0.0892FSIMc0.3505
    IW-SSIM0.6424GSM0.1018
    IFC1.1554CVSS0.0558
    VIF1.1825MPCC
    MAD2.7711CAGS0.4814
    DownLoad: CSV
  • [1]

    姚军财, 刘贵忠 2018 物理学报 67 108702Google Scholar

    Yao J C, Liu G Z 2018 Acta Phys. Sin. 67 108702Google Scholar

    [2]

    Athar S, Wang Z 2019 IEEE Access 7 140030Google Scholar

    [3]

    Lin W S, Kuo C C J 2011 J. Vis. Commun. Image R. 22 297Google Scholar

    [4]

    Chang H W, Zhang Q W, Wu Q G, Gan Y 2015 Neurocomputing 151 1142Google Scholar

    [5]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600Google Scholar

    [6]

    Sheikh H R, Bovik A C 2006 IEEE Trans. Image Process. 15 430Google Scholar

    [7]

    Sheikh H R, Bovik A C, de Veciana G 2005 IEEE Trans. Image Process. 14 2117Google Scholar

    [8]

    Wang Z, Simoncelli E P, Bovik A C 2003 37th Asilomar Conference on Signals, Systems and Computer PacificGrove, CA, November 9−12, 2003 pp1398−1402

    [9]

    Wang Z, Li Q 2011 IEEE Trans. Image Process. 20 1185Google Scholar

    [10]

    Larson E C, Chandler D M 2010 J. Electron. Imaging 19 011006Google Scholar

    [11]

    Zhang L, Zhang L, Mou X Q 2010 IEEE International Conference on Image Processing Hong Kong, Peoples of China, September 26−29, 2010 pp321−324

    [12]

    Zhang L, Zhang L, Mou X Q, Zhang D 2011 IEEE Trans. Image Process. 20 2378Google Scholar

    [13]

    Liu A M, Lin W S, Narwaria M 2012 IEEE Trans. Image Process. 21 1500Google Scholar

    [14]

    Jia H Z, Zhang L, Wang T H 2018 IEEE Access 6 65885Google Scholar

    [15]

    姚军财, 申静 2020 物理学报 69 148702Google Scholar

    Yao J C, Shen J 2020 Acta Phys. Sin. 69 148702Google Scholar

    [16]

    Robertson A R 1990 Color Res. Appl. 15 167Google Scholar

    [17]

    Mahny M, Vaneycken L, Oosterlinck A 1994 Color Res. Appl. 19 105

    [18]

    Lee D, Plataniotis K N 2015 IEEE Trans. Image Process. 24 3950Google Scholar

    [19]

    Lee D, Plataniotis K N 2014 2014 International Conference on Acoustics, Speech and Signal Processing (ICASSP) Florence, Italy, May 4−9, 2014 pp166−170

    [20]

    Berns R S 2014 Color Res. Appl. 39 322Google Scholar

    [21]

    Zhang L, Shen Y, Li H Y 2014 IEEE Trans. Image Process. 23 4270Google Scholar

    [22]

    Jain R C, Kasturi R, Schunck B G 1995 Machine Vision (New York: McGraw-Hill) pp140–185

    [23]

    Sonka M, Hlavac V, Boyle R 2008 Image Processing, Analysis and Machine Vision (3rd Ed.) (Stanford: Cengage Learning) p77

    [24]

    Xue W F, Zhang L, Mou X Q, Bovik A C 2014 IEEE Trans. Image Process. 23 684Google Scholar

    [25]

    Kim D O, Han H S, Park R H 2010 IEEE Trans. Consum. Electr. 56 930Google Scholar

    [26]

    Nafchi H Z, Shahkolaei A, Hedjam R, Cheriet M 2016 IEEE Access 4 5579Google Scholar

    [27]

    Taguchi G, Yokoyama Y, Wu Y 1993 Taguchi Methods, Design of experiments (Dearbon, MI: ASI Press) pp59−63

    [28]

    Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F, Kuo C C J 2015 Signal Process. Image Commun. 30 57Google Scholar

    [29]

    Larson E C, Chandler D M http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23[2020-7-13]

    [30]

    Sheikh H R, Sabir M F, Bovik A C 2006 IEEE Trans. Image Process. 15 3440Google Scholar

    [31]

    Ninassi A, Le Callet P, Autrusseau F 2006 Conference on Human Vision and Electronic Imaging Ⅺ San Jose, CA, USA, January 16–18, 2006 p1

    [32]

    Wang S Q, Gu K, Zeng K, Wang Z, Lin W S 2016 Proc. SPIE 6057 Comput. Graph. Appl. 38 47Google Scholar

    [33]

    Lin C H, Wu C C, Yang P H, Kuo T Y 2009 J. Disp. Technol. 5 323Google Scholar

    [34]

    Preiss J, Fernandes F, Urban P 2014 IEEE Trans. Image Process. 23 1366Google Scholar

  • [1] Zhao Dan, Wang Shuai-Hu, Liu Shao-Gang, Cui Jin, Dong Li-Qiang. Vibration transfer characteristic of gradient-like structure based on magnetorheological fluid. Acta Physica Sinica, 2020, 69(9): 098301. doi: 10.7498/aps.69.20200326
    [2] Yao Jun-Cai, Shen Jing. Objective assessment of image quality based on image content contrast perception. Acta Physica Sinica, 2020, 69(14): 148702. doi: 10.7498/aps.69.20200335
    [3] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [4] Yao Jun-Cai, Liu Gui-Zhong. Objective assessment method of image quality based on visual perception of image content. Acta Physica Sinica, 2018, 67(10): 108702. doi: 10.7498/aps.67.20180168
    [5] Guan Yi-Jun, Sun Hong-Xiang, Yuan Shou-Qi, Ge Yong, Xia Jian-Ping. Propagation characteristics of laser-generated surface acoustic waves in composite plate with gradient changes of near-surface viscous moduli. Acta Physica Sinica, 2016, 65(22): 224201. doi: 10.7498/aps.65.224201
    [6] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun. Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [7] Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng, Wu Qin. Image smoothing model based on the combination of the gradient and curvature. Acta Physica Sinica, 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [8] Wu Hui-Bin, Mei Feng-Xiang. A gradient representation of holonomic system in the event space. Acta Physica Sinica, 2015, 64(23): 234501. doi: 10.7498/aps.64.234501
    [9] Zhou Jian-Hua, Li Dong-Hua, Zeng Yang-Su, Zhu Hong-Peng. Propagation properties of Gaussian beam in gradient negative index of refraction material. Acta Physica Sinica, 2014, 63(10): 104205. doi: 10.7498/aps.63.104205
    [10] Hou Ming-Qiang, Gong Zi-Zheng, Xu Kun-Bo, Zheng Jian-Dong, Cao Yan, Niu Jin-Chao. Experimental study on hypervelocity impact characteristics of density-grade thin-plate. Acta Physica Sinica, 2014, 63(2): 024701. doi: 10.7498/aps.63.024701
    [11] Liu Yan, Zhang Wen-Ming, Zhong Zuo-Yang, Peng Zhi-Ke, Meng Guang. Nonlinear dynamic analysis of nano-resonator driven by optical gradient force. Acta Physica Sinica, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [12] Li Zhen, Zhang Xi-Wen, He Feng. Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor. Acta Physica Sinica, 2014, 63(5): 054704. doi: 10.7498/aps.63.054704
    [13] Shi Ming-Zhu, Xu Ting-Fa, Liang Jiong, Li Xiang-Min. PSF estimation via gradient cepstrum analysis for single blurred image. Acta Physica Sinica, 2013, 62(17): 174204. doi: 10.7498/aps.62.174204
    [14] Cai Zhi-Peng, Yang Wen-Zheng, Tang Wei-Dong, Hou Xun. Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes. Acta Physica Sinica, 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [15] Lou Zhi-Mei, Mei Feng-Xiang. A second order gradient representation of mechanics system. Acta Physica Sinica, 2012, 61(2): 024502. doi: 10.7498/aps.61.024502
    [16] Feng You-Jun, Lin Zhong-Xiao, Zhang Rong-Zhu. The influence of root mean square phase gradient of continuous phase plate on smoothing focal spot. Acta Physica Sinica, 2011, 60(10): 104202. doi: 10.7498/aps.60.104202
    [17] Hong Ke, Yuan Ling, Shen Zhong-Hua, Ni Xiao-Wu. Analysis of Lamb waves propagation in functional gradient materials using Taylor expansion method. Acta Physica Sinica, 2011, 60(10): 104303. doi: 10.7498/aps.60.104303
    [18] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [19] Hu Yue-Hui, Yin Sheng-Yi, Chen Guang-Hua, Wu Yue-Ying, Zhou Xiao-Ming, Zhou Jian-Er, Wang Qing, Zhang Wen-Li. Investigation of a-Si:H film characteristics influenced by magnetic field gradient in MWECR CVD plasma system. Acta Physica Sinica, 2004, 53(7): 2263-2269. doi: 10.7498/aps.53.2263
    [20] YIN ZONG-MIN, ZHU SONG-LAI. IMAGE PROPERTIES OF TAPERED GRADIENT-INDEX FIBER. Acta Physica Sinica, 1981, 30(12): 1603-1608. doi: 10.7498/aps.30.1603
Metrics
  • Abstract views:  8071
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2020
  • Accepted Date:  12 July 2020
  • Available Online:  09 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回