Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the regulation of electronic phase transitions for correlated oxides by using multiple fields

Xuan Chi-Zhou Hai Fan-Li

Citation:

Research on the regulation of electronic phase transitions for correlated oxides by using multiple fields

Xuan Chi-Zhou, Hai Fan-Li
PDF
Get Citation
  • External-field-triggered multiple electronic phase transitions within correlated oxides open up a new paradigm to explore exotic physical functionalities and new quantum transitions via regulating the electron correlations and the interplay in the degrees of freedom. This enables the promising applications in the multidisciplinary field of neuromorphic computing, magnetoelectric coupling, smart windows, bio-sensing and energy conversion. Herein, this review delivers a comprehensive picture of regulating the electronic phase transitions for correlated oxides via multi-field covering the VO2, ReNiO3 and etc., thus highlighting the critical role of external field in exploring the exotic physical property and designing new quantum states. Beyond conventional semiconductors, the complicated interplay in the charge, lattice, orbital and spin degrees of freedom within correlated oxides triggers abundant correlated physical functionalities that are rather susceptible to the external field. For example, hydrogen-associated electron doping Mottronics enables the possibility in discovering new electronic phase and magnetic ground states within the hydrogen-related phase diagram of correlated oxides. In addition, filling-controlled Mottronics by using hydrogenation triggers multiple orbital reconfigurations for correlated oxides away from the correlated electron ground state that results in new quantum transitions via directly manipulating the d-orbital configuration and occupation, such as unconventional Ni-based superconductivity. The transition metals of correlated oxides are generally substituted by dopants to effectively adjust the electronic phase transitions via introducing the carrier doping and/or lattice strain. Imparting an interfacial strain to correlated oxides introduces an additional freedom to manipulate the electronic phase transition via distorting the lattice framework, owing to the interplay between charge and lattice degrees of freedom. In recent years, the polarization field associated to BiFeO3 or PMN-PT material as triggered by a cross-plane electric field was used to adjust the electronic phase transition of correlated oxides that enriches the promising the correlated electronic devices. The exotic physical phenomenon as discovered in the correlated oxides originates from the non-equilibrium states that are triggered by imparting external fields. Nevertheless, the underneath mechanism as associated to the regulation in the electronic phase transitions of correlated oxides is still in a long-standing puzzle, owing to the strong correlation effect. As a representative case, hydrogen-associated Mottronic transitions introduces an additional ion degree of freedom to the correlated oxides that is rather difficult to be decoupled within correlated system. In addition, from the perspective of material synthesis, the abovementioned correlated oxides are expected to be compatible to conventional semiconducting process, by which the prototypical correlated electronic devices can be largely developed. The key point that accurately adjusts and designs the electronic phase transitions for correlated oxides via external fields is associated to clarify the basic relationship between the microscopic degrees of freedom and macroscopic correlated physical properties. On the basis, the multiple electronic phase transitions as triggered by external field within correlated oxides provide new guidance for designing new functionality and interdisciplinary device applications.
  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246

    [3]

    Lu N, Zhang Z, Wang Y, Li H-B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C-W, Wu J, Yu P 2022 Nat. Energy 7 1208

    [4]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 2316536

    [5]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078

    [6]

    Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y 2021 Science 374 1501

    [7]

    Tang K, Dong K, Li J, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C-Y, Grigoropoulos C P, Javey A, Urban J J, Yao J, Levinson R, Wu J 2021 Science 374 1504

    [8]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533

    [9]

    Lee D, Chung B, Shi Y, Kim G Y, Campbell N, Xue F, Song K, Choi S Y, Podkaminer J P, Kim T H, Ryan P J, Kim J W, Paudel T R, Kang J H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J, Eom C B 2018 Science 362 1037

    [10]

    Lao B, Zheng X, Li S, Wang Z-M 2023 Acta Phys. Sin. 72 097702

    [11]

    Zhou X, Wu Y, Yan F, Zhang T, Ke X, Meng K, Xu X, Li Z, Miao J, Chen J, Jiang Y 2021 Ceram. Int. 47 25574

    [12]

    Gao L, Wang H, Meng F, Peng H, Lyu X, Zhu M, Wang Y, Lu C, Liu J, Lin T, Ji A, Zhang Q, Gu L, Yu P, Meng S, Cao Z, Lu N 2023 Adv. Mater. 2300617

    [13]

    Chen J K, Mao W, Ge B H, Wang J, Ke X Y, Wang V, Wang Y P, Dobeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694

    [14]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68

    [15]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231

    [16]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838

    [17]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [18]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, Qiao L 2023 Nature 615 50

    [19]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D-X, Zhang G-M, Wang M 2023 Nature 621 493

    [20]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124

    [21]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661

    [22]

    Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y 2023 Chem. Rev. 123 7025

    [23]

    Yajima T, Nishimura T, Toriumi A 2015 Nat. Commun. 6 10104

    [24]

    Victor J-L, Gaudon M, Salvatori G, Toulemonde O, Penin N, Rougier A 2021 J. Phys. Chem. Lett. 12 7792

    [25]

    Suleiman A O, Mansouri S, Margot J, Chaker M 2022 Appl. Surf. Sci. 571 151267

    [26]

    Sakai E, Yoshimatsu K, Shibuya K, Kumigashira H, Ikenaga E, Kawasaki M, Tokura Y, Oshima M 2011 Phys. Rev. B 84 195132

    [27]

    Liu K, Lee S, Yang S, Delaire O, Wu J 2018 Mater. Today 21 875

    [28]

    Li H F, Meng F Q, Bian Y, Zhou X C, Wang J U, Xu X G, Jiang Y, Chen N F, Chen J K 2023 J. Mater. Sci. Technol. 148 235

    [29]

    Li H F, Wang Y Z, Zhang H, Fang X H, Zhou X C, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2022 Appl. Phys. Lett. 121 253901

    [30]

    Chen J, Li H, Wang J, Ke X, Ge B, Chen J, Dong H, Jiang Y, Chen N 2020 J. Mater. Chem. A 8 13630

    [31]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys 81 046501

    [32]

    Catalan G 2008 Phase Transit. 81 729

    [33]

    Chen J 2023 Chin. Sci. Bull. 68 100

    [34]

    Markiewicz E, Bujakiewicz-Koronska R, Budziak A, Kalvane A, Nalecz D M 2014 Phase Transit. 87 1060

    [35]

    Kozlenko D P, Belik A A, Kichanov S E, Mirebeau I, Sheptyakov D V, Strässle T, Makarova O L, Belushkin A V, Savenko B N, Takayama-Muromachi E 2010 Phys. Rev. B 82 014401

    [36]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [37]

    Song Q, Doyle S, Pan G A, El Baggari I, Segedin D F, Carrizales D C, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, LaBollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, Mundy J A Nat. Phys.

    [38]

    Yajima T, Nishimura T, Toriumi A 2017 Small 13 1603113

    [39]

    Asayesh-Ardakani H, Nie A M, Marley P M, Zhu Y H, Phillips P J, Singh S, Mashayek F, Sambandamurthy G, Low K B, Klie R F, Banerjee S, Odegard G M, Shahbazian-Yassar R 2015 Nano Lett. 15 7179

    [40]

    Zhou J Y, Xie M Z, Cui A Y, Zhou B, Jiang K, Shang L Y, Hu Z G, Chu J H 2018 ACS Appl. Mater. Interfaces 10 30548

    [41]

    Rao C N R, Natarajan M, Subba Rao G V, Loehman R E 1971 J. Phys. Chem. Solids 32 1147

    [42]

    Zhou X, Cui Y, Shang Y, Li H, Wang J, Meng Y, Xu X, Jiang Y, Chen N, Chen J 2023 J. Phys. Chem. C 127 2639

    [43]

    Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J 2023 Phys. Chem. Chem. Phys. 25 21908

    [44]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974

    [45]

    Chen Y L, Wang Z W, Chen S, Ren H, Wang L X, Zhang G B, Lu Y L, Jiang J, Zou C W, Luo Y 2018 Nat. Commun. 9 818

    [46]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113

    [47]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J-M 2010 Adv. Mater. 22 5517

    [48]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860

    [49]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402

    [50]

    Li H B, Lou F, Wang Y J, Zhang Y, Zhang Q H, Wu D, Li Z L, Wang M, Huang T T, Lyu Y J, Guo J W, Chen T Z, Wu Y, Arenholz E K, Lu N P, Wang O R D, He Q, Gu L, Zhu J, Nan C W, Zhong X Y, Xiang H J, Yu P 2019 Adv. Sci. 6 1901432

    [51]

    Park J, Yoon H, Sim H, Choi S Y, Son J 2020 ACS Nano 14 2533

    [52]

    Ji H, Wang S, Zhou G, Zhou X, Dou J, Kang P, Chen J, Xu X 2024 Phys. Chem. Chem. Phys. 26 5907

    [53]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416

    [54]

    Wang M, Sui X L, Wang Y J, Juan Y H, Lyu Y J, Peng H N, Huang T T, Shen S C, Guo C G, Zhang J B, Li Z L, Li H B, Lu N P, N'Diaye A T, Arenholz E, Zhou S Y, He Q, Chu Y H, Duan W H, Yu P 2019 Adv. Mater. 31 1900458

    [55]

    Li Z, Lyu Y, Ran Z, Wang Y, Zhang Y, Lu N, Wang M, Sassi M, Ha T D, T. N'Diaye A, Shafer P, Pearce C, Rosso K, Arenholz E, Juang J-Y, He Q, Chu Y-H, Luo W, Yu P 2023 Adv. Funct. Mater. 2212298

    [56]

    Wang Q, Gu Y, Chen C, Han L, Fayaz M U, Pan F, Song C 2024 ACS Appl. Mater. Interfaces 16 3726

    [57]

    Zhou X, Shang Y, Gu Z, Jiang G, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N, Chen J 2024 Appl. Phys. Lett. 124 082103

    [58]

    Hong B, Yang Y, Hu K, Dong Y, Zhou J, Zhang Y, Zhao W, Luo Z, Gao C 2019 Appl. Phys. Lett. 115 251605

    [59]

    Zhang Z, Sun Y, Zhang H-T 2022 J. Appl. Phys. 131 120901

    [60]

    Zhi B, Gao G, Xu H, Chen F, Tan X, Chen P, Wang L, Wu W 2014 ACS Appl. Mater. Interfaces 6 4603

    [61]

    Salev P, del Valle J, Kalcheim Y, Schuller I K 2019 P Natl. Acad. Sci. USA 116 8798

    [62]

    Heo S, Oh C, Eom M J, Kim J S, Ryu J, Son J, Jang H M 2016 Sci. Rep. 6 22228

    [63]

    Sheng Z G, Gao J, Sun Y P 2009 Phys. Rev. B 79 174437

    [64]

    Baldini M, Postorino P, Malavasi L, Marini C, Chapman K W, Mao H-k 2016 Phys. Rev. B 93 245137

    [65]

    Gavriliuk A G, Trojan I A, Struzhkin V V 2012 Phys. Rev. Lett. 109 086402

    [66]

    Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao H-K 2020 Adv. Funct. Mater. 30 2000987

    [67]

    Xue W H, Liu G, Zhong Z C, Dai Y H, Shang J, Liu Y W, Yang H L, Yi X H, Tan H W, Pan L, Gao S, Ding J, Xu X H, Li R W 2017 Adv. Mater. 29 1702162

    [68]

    Sun X-N, Qu Z-M, Wang Q-G, Yuan Y, Liu S-H 2019 Acta Phys. Sin. 68 107201

    [69]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109

    [70]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S P 2013 Science 339 1402

    [71]

    Chen J K, Mao W, Gao L, Yan F B, Yajima T, Chen N F, Chen Z Z, Dong H L, Ge B H, Zhang P, Cao X Z, Wilde M, Jiang Y, Terai T, Shi J 2020 Adv. Mater. 32 1905060

    [72]

    Li H, Wang Y, Li H, Yan F, Ge B, Zhang J, Chen N, Chen J 2022 ACS Appl. Electron. Mater. 4 4873

    [73]

    Hu F X, Gao J 2006 Appl. Phys. Lett. 88

    [74]

    Sharma Y, Balachandran J, Sohn C, Krogel J T, Ganesh P, Collins L, Ievlev A V, Li Q, Gao X, Balke N, Ovchinnikova O S, Kalinin S V, Heinonen O, Lee H N 2018 ACS Nano 12 7159

    [75]

    Zhang Z, Mondal S, Mandal S, Allred J M, Aghamiri N A, Fali A, Zhang Z, Zhou H, Cao H, Rodolakis F, McChesney J L, Wang Q, Sun Y, Abate Y, Roy K, Rabe K M, Ramanathan S 2021 P Natl. Acad. Sci. USA 118 e2017239118

    [76]

    Schrecongost D, Aziziha M, Zhang H-T, Tung I C, Tessmer J, Dai W, Wang Q, Engel-Herbert R, Wen H, Picard Y N, Cen C 2019 Adv. Funct. Mater. 29 1905585

    [77]

    Lee Y J, Hong K, Na K, Yang J, Lee T H, Kim B, Bark C W, Kim J Y, Park S H, Lee S, Jang H W 2022 Adv. Mater. 34 2203097

    [78]

    Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H, Muraoka Y 2020 Nat. Commun. 11 3591

    [79]

    Li G, Xie D, Zhong H, Zhang Z, Fu X, Zhou Q, Li Q, Ni H, Wang J, Guo E-j, He M, Wang C, Yang G, Jin K, Ge C 2022 Nat. Commun. 13 1729

  • [1] Chen Sheng-Ru, Lin Shan, Hong Hai-Tao, Cui Ting, Jin Qiao, Wang Can, Jin Kui-Juan, Guo Er-Jia. Strong spin-lattice entanglement in cobaltites. Acta Physica Sinica, doi: 10.7498/aps.72.20230206
    [2] Sun Yu-Ting, Li Ming-Ming, Wang Ling-Rui, Fan Zhen, Guo Er-Jia, Guo Hai-Zhong. Research progress of control of physical properties of topological phase change oxide films by external field. Acta Physica Sinica, doi: 10.7498/aps.72.20222266
    [3] Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling. Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice. Acta Physica Sinica, doi: 10.7498/aps.71.20221765
    [4] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, doi: 10.7498/aps.71.20220627
    [5] Guo Wen-Ti, Huang Lu, Xu Gui-Gui, Zhong Ke-Hua, Zhang Jian-Min, Huang Zhi-Gao. Pressure strain control of electronic structure of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, doi: 10.7498/aps.70.20201237
    [6] Li Yun, Lu Wen-Jian. Tuning metal-insulator transition in δ-doped La:SrTiO3 superlattice by varying doping dimensionality and concentration. Acta Physica Sinica, doi: 10.7498/aps.70.20210830
    [7] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, doi: 10.7498/aps.68.20191450
    [8] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, doi: 10.7498/aps.67.20181372
    [9] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, doi: 10.7498/aps.67.20182007
    [10] Jiao Yuan-Yuan, Sun Jian-Ping, Prashant Shahi, Liu Zhe-Hong, Wang Bo-Sen, Long You-Wen, Cheng Jin-Guang. Effect of Pb doping on metallic state of cubic pyrochlore Cd2Ru2O7. Acta Physica Sinica, doi: 10.7498/aps.67.20180343
    [11] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, doi: 10.7498/aps.67.20180835
    [12] Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin. Research progress of metal-insulator phase transition mechanism in VO2. Acta Physica Sinica, doi: 10.7498/aps.65.047201
    [13] Du Yong-Ping, Liu Hui-Mei, Wan Xian-Gang. Novel properties of 5d transition metal oxides. Acta Physica Sinica, doi: 10.7498/aps.64.187201
    [14] Zhao Xing, Mei Bo, Bi Jin-Shun, Zheng Zhong-Shan, Gao Lin-Chun, Zeng Chuan-Bin, Luo Jia-Jun, Yu Fang, Han Zheng-Sheng. Single event transients in a 0.18 m partially-depleted silicon-on-insulator complementary metal oxide semiconductor circuit. Acta Physica Sinica, doi: 10.7498/aps.64.136102
    [15] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.59.7857
    [16] Peng Zhen-Sheng, Tang Yong-Gang, Yan Guo-Qing, Guo Huan-Yin, Mao Qiang. Peculiar transport properties and CMR effect of La0.67Sr0.08Na0.25MnO3. Acta Physica Sinica, doi: 10.7498/aps.56.1707
    [17] Qiu Mei-Qing, Fang Ming-Hu. Metal-insulator transition and spin-glass behavior in Eu2-xPbx Ru2O7 system. Acta Physica Sinica, doi: 10.7498/aps.55.4912
    [18] YU JIAN-HUA, SUN CHENG-XIU, WANG MAO-XIANG, ZHANG YOU-WEN, WEI TONG-LI. ELECTRON TUNNELING AND NEGATIVE DIFFERENTIAL RESISTANCE OF MIM LIGHT-EMISSION TUNNEL JUNCTION. Acta Physica Sinica, doi: 10.7498/aps.47.300
    [19] Hu Wei-Ying, Zeng Zhi, Zheng Qing-Qi, Huang Mei-Chun. . Acta Physica Sinica, doi: 10.7498/aps.44.273
    [20] CHHN FENG, YING HE-PING, XU TIE-FENG, LI WEN-ZHU. INSULATOR-METAL TRANSITION OF THE 2-D HALF-FILLED HUBBARD MODEL AT FINITE-TEMPERATURES. Acta Physica Sinica, doi: 10.7498/aps.43.1672
Metrics
  • Abstract views:  248
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Available Online:  09 April 2024

/

返回文章
返回