搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚稳相钙钛矿稀土镍酸盐薄膜材料的可控生长与电子相变性质研究

周轩弛 焦勇杰

引用本文:
Citation:

亚稳相钙钛矿稀土镍酸盐薄膜材料的可控生长与电子相变性质研究

周轩弛, 焦勇杰

Research on the controllable growth and electronic phase transitions for metastable perovskite rare-earth nickelate films

Zhou Xuan-Chi, Jiao Yong-Jie
PDF
导出引用
  • 稀土镍酸盐(ReNiO3, Re为镧系稀土元素)由特征温度场、氢化、临界电场及应力场等多物理参量引发的多重电子相变及物性突变引起了凝聚态物理和材料科学领域的广泛关注, 在突变式敏感电阻元器件、人工智能、能量转换及弱电场传感等领域展现出可观的应用前景. 然而, ReNiO3材料本征的热力学亚稳性仍制约其在关联电子器件中的实际应用. 本文利用激光分子束外延法制备出原子级平整的亚稳态ReNiO3(Re=Nd, Sm及Nd1-xSmx)薄膜材料, 阐明高氧压原位退火在稳定其Ni3+扭曲钙钛矿结构中的关键作用, 结合同步辐射和X射线光电子能谱等先进表征手段厘清ReNiO3薄膜材料的化学环境及电子结构, 并揭示出其各向异性的电子相变功能特性. 本工作为制备原子级平整的亚稳态钙钛矿稀土镍酸盐薄膜材料提供了方向, 并引入全新的功能调控自由度——晶体学各向异性, 为进一步探索稀土镍酸盐材料体系中的新型电子相和功能特性奠定基础.
    The multiple electronic phase transitions as achieved in the metastable perovskite (ReNiO3, Re denotes as the lanthanide rare-earth elements) by using a critical temperature, hydrogenation, electrical field and interfacial strain arouse considerable attentions in the field of condensed matter physics and material science that enable the promising applications in the field of critical temperature thermistor, artificial intelligence, energy conversion and weak electric field sensing. Nevertheless, the above abundant applications are still bottlenecked by the intrinsically thermodynamic metastability associated to ReNiO3. Herein, we synthesized the atomically flat ReNiO3 film material with thermodynamic metastability by using laser molecular beam epitaxy (LMBE) that exhibits excellent thermally-driven electronic phase transitions. Noting the similar lattice constant between LaAlO3 substrate and ReNiO3 film, this is attributed to the interfacial heterogeneous nucleation as induced by the template effect of as-used (001)-oriented LaAlO3 substrates. In addition, we clarify the critical role of in situ annealing upon an oxygen-enriched atmosphere in stabilizing the distorted perovskite structure associated to ReNiO3. Apart from the depositing process associated to LMBE, the ReNiO3 with heavy rare-earth composition exhibits a more distorted NiO6 octahedron and a higher Gibbs free energy that is rather difficult to be synthesized by using physical vacuum deposition. As a representative case, the in situ annealing-assisted LMBE process cannot be utilized to deposit the SmNiO3 film, in which the impurity peaks associated to Re2O3 and NiO are observed in its XRD spectra. Assisted by the X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure, the valence state of nickel for ReNiO3 was revealed to be +3, with the t2g6eg1 configuration being observed. Considering the highly tunable electronic orbital configuration of ReNiO3 associated to the NiO6 octahedron, co-occupying the A-site of perovskite structure with Nd and Sm elements regulates the transition temperature (TMIT) for ReNiO3 within a broad temperature range. Furthermore, we demonstrate the anisotropy in the electronic phase transitions for Nd1-xSmxNiO3, in which case the TMIT as achieved in the Nd1-xSmxNiO3/LaAlO3 (111) heterostructure exceeds the one deposited on the (001)-oriented LaAlO3 substrate. The presently observed anisotropy in the electrical transportation for Nd1-xSmxNiO3 film materials is associated to the anisotropic in-plane NiO6 octahedron configuration as triggered by differently oriented LaAlO3 substrates. The present work is expected to introduce a new freedom to regulate the electronic phase transition and explore new electronic phase within ReNiO3 material system, and pave ways toward growing atomically flat ReNiO3 film material with expected electronic phase transition functionality.
  • [1]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, Qiao L 2023 Nature 615 50

    [2]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402

    [3]

    Vistoli L, Wang W B, Sander A, Zhu Q X, Casals B, Cichelero R, Barthélémy A, Fusil S, Herranz G, Valencia S, Abrudan R, Weschke E, Nakazawa K, Kohno H, Santamaria J, Wu W D, Garcia V, Bibes M 2019 Nat. Phys. 15 67

    [4]

    Zhou X-C, Li H-F 2024 Acta Phys. Sin. 73 117102

    [5]

    Zhou X, Shang Y, Gu Z, Jiang G, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N, Chen J 2024 Appl. Phys. Lett. 124 082103

    [6]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [7]

    Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y B, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, Schmitt T 2016 Nat. Commun. 7 13017

    [8]

    Domínguez C, Georgescu A B, Mundet B, Zhang Y J, Fowlie J, Mercy A, Waelchli A, Catalano S, Alexander D T L, Ghosez P, Georges A, Millis A J, Gibert M, Triscone J M 2020 Nat. Mater. 19 1182

    [9]

    Song Q, Doyle S, Pan G A, El Baggari I, Segedin D F, Carrizales D C, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, LaBollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, Mundy J A 2023 Nat. Phys. 19 522

    [10]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533

    [11]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860

    [12]

    Shi J, Ha S D, Zhou Y, Schoofs F, Ramanathan S 2013 Nat. Commun. 4 2676

    [13]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J M 2010 Adv. Mater. 22 5517

    [14]

    Phillips P J, Rui X, Georgescu A B, Disa A S, Longo P, Okunishi E, Walker F, Ahn C H, Ismail-Beigi S, Klie R F 2017 Phys. Rev. B 95 205131

    [15]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663

    [16]

    Zhao D L, Cong M, Liu Z, Ma Z W, Wang K, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101445

    [17]

    Shi Y, Zhao W, Ma Z, Xiao G, Zou B 2021 Chem. Sci. 12 14711

    [18]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 34 2316536

    [19]

    Zhang H T, Park T J, Zaluzhnyy I A, Wang Q, Wadekar S N, Manna S, Andrawis R, Sprau P O, Sun Y F, Zhang Z, Huang C Z, Zhou H, Zhang Z, Narayanan B, Srinivasan G, Hua N, Nazaretski E, Huang X J, Yan H F, Ge M Y, Chu Y S, Cherukara M J, Holt M V, Krishnamurthy M, Shpyrko O G, Sankaranarayanan S, Frano A, Roy K, Ramanathan S 2020 Nat. Commun. 11 2245

    [20]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68

    [21]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231

    [22]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337

    [23]

    Mattoni G, Zubko P, Maccherozzi F, van der Torren A J H, Boltje D B, Hadjimichael M, Manca N, Catalano S, Gibert M, Liu Y, Aarts J, Triscone J M, Dhesi S S, Caviglia A D 2016 Nat. Commun. 7 13141

    [24]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078

    [25]

    Zhou X, Cui Y, Shang Y, Li H, Wang J, Meng Y, Xu X, Jiang Y, Chen N, Chen J 2023 J. Phys. Chem. C 127 2639

    [26]

    Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J 2023 Phys. Chem. Chem. Phys. 25 21908

    [27]

    Zhou X, Jiao Y, Li H 2024 Appl. Phys. Lett. 125 032103

    [28]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [29]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501

    [30]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775

    [31]

    Escote M T, da Silva A M L, Matos J R, Jardim R F 2000 J. Solid State Chem. 151 298

    [32]

    Chen X G, Zhang X, Koten M A, Chen H H, Xiao Z Y, Zhang L, Shield J E, Dowben P A, Hong X 2017 Adv. Mater. 29 1701385

    [33]

    Hadjimichael M, Mundet B, Domínguez C, Waelchli A, De Luca G, Spring J, Jöhr S, Walker S M, Piamonteze C, Alexander D T L, Triscone J M, Gibert M 2023 Adv. Electron. Mater. 9 2201182

    [34]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582

    [35]

    Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao H-K 2020 Adv. Funct. Mater. 30 2000987

    [36]

    Chen J K, Hu H Y, Wang J O, Yajima T, Ge B H, Ke X Y, Dong H L, Jiang Y, Chen N F 2019 Mater. Horiz. 6 788

    [37]

    Chen J, Chen J, Ren Z, Zhao D, Wang M, Miao J, Xu X, Jiang Y, Chen N 2021 J. Rare Earths 39 174

    [38]

    Zhou X, Wu Y, Yan F, Zhang T, Ke X, Meng K, Xu X, Li Z, Miao J, Chen J, Jiang Y 2021 Ceram. Int. 47 25574

    [39]

    Catalan G 2008 Phase Transit. 81 729

    [40]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416

    [41]

    Zhong J, Li Z, Zheng Y Q, Jiang P H, Zhang F, Zhang T, Cui Y C, Zhong Z C, Chen N F, Chen J K 2023 J. Am. Ceram. Soc. 106 5067

    [42]

    Chen J K, Hu H Y, Meng F Q, Yajima T, Yang L X, Ge B H, Ke X Y, Wang J O, Jiang Y, Chen N F 2020 Matter 2 1296

  • [1] 杨栋超, 易立志, 丁林杰, 刘敏, 朱丽娅, 许云丽, 何雄, 沈顺清, 潘礼庆, JohnQ. Xiao. 铁磁绝缘体中磁振子的非平衡稳态输运性质. 物理学报, doi: 10.7498/aps.73.20240498
    [2] 周轩弛, 李海帆. 强关联电子相变氧化物材料及多场调控. 物理学报, doi: 10.7498/aps.73.20240289
    [3] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, doi: 10.7498/aps.72.20230602
    [4] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, doi: 10.7498/aps.7120221046
    [5] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, doi: 10.7498/aps.71.20221046
    [6] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变. 物理学报, doi: 10.7498/aps.71.20221765
    [7] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220627
    [8] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, doi: 10.7498/aps.70.20210830
    [9] 包定华. 稀土发光铁电薄膜的研究进展. 物理学报, doi: 10.7498/aps.69.20200738
    [10] 焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光. Pb掺杂对Cd2Ru2O7反常金属态的调控. 物理学报, doi: 10.7498/aps.67.20180343
    [11] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, doi: 10.7498/aps.67.20180835
    [12] 何龙, 宋筠. 双层石墨烯材料中无序导致超导-绝缘体相变的数值研究. 物理学报, doi: 10.7498/aps.62.057303
    [13] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, doi: 10.7498/aps.59.7857
    [14] 彭振生, 唐永刚, 严国清, 郭焕银, 毛 强. La0.67Sr0.08Na0.25MnO3的奇特输运性质及CMR效应. 物理学报, doi: 10.7498/aps.56.1707
    [15] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, doi: 10.7498/aps.50.977
    [16] 何杰, 许振嘉. 一种新的反应机制——轻稀土金属薄膜与Si衬底的反应机理研究. 物理学报, doi: 10.7498/aps.42.1617
    [17] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变. 物理学报, doi: 10.7498/aps.41.136
    [18] 李宝祥. 稀土五磷酸盐晶体显微硬度的测定. 物理学报, doi: 10.7498/aps.38.128
    [19] 李宝祥. 稀土五磷酸盐晶体折射率和密度的测定. 物理学报, doi: 10.7498/aps.36.823
    [20] 虞心南, 张青哲, 谢侃, 齐上雪, 康瑾, 林彰达. 富镧混合稀土-镍贮氢材料CO,O2和H2O中毒的表面特征. 物理学报, doi: 10.7498/aps.32.1333
计量
  • 文章访问数:  154
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-05

/

返回文章
返回