搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过阻尼分数阶Langevin方程及其随机共振

高仕龙 钟苏川 韦鹍 马洪

引用本文:
Citation:

过阻尼分数阶Langevin方程及其随机共振

高仕龙, 钟苏川, 韦鹍, 马洪

Overdamped fractional Langevin equation and its stochastic resonance

Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong
PDF
导出引用
  • 通过对广义Langevin方程阻尼核函数的适当选取,在过阻尼的情形下, 推导出分数阶Langevin方程.给合反常扩散理论和分数阶导数的记忆性, 讨论了分数阶Langevin方程的物理意义,进而得出分数阶Langevin方程产生随机共振的内在机理.数值模拟表明,在一定的阶数范围内,分数阶Langevin方程可以产生随机共振, 并且分数阶下的信噪比增益好于整数阶情形.
    By choosing an appropriate damping kernel function of generalized Langevin equation, fractional Langevin equation (FLE) is derived in the case of overdamped condition. With the theory of anomalous diffusion and the memory of fractional derivatives, the physical meaning of FLE is discussed. Moreover, the internal mechanism of stochastic resonance about FLE is obtained. Finally, the numerical simulation shows that in a certain range of the order, stochastic resonance appears in FLE, and it is evident that the SNR gain in fractional Langevin equation is better than that of the integer-order situation.
    • 基金项目: 国家自然科学基金重点项目(批准号: 10731050)和中国博士后科学基金 (批准号: 20100471651, 201104693)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10731050) and the China Postdoctoral Science Foundation (Grant No. 20100471651, 201104693).
    [1]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p80 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京:科学出版社) 第80页]

    [2]

    Deng W H, Barkai E 2009 Phys. Rev. E 79 011112

    [3]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 L453

    [4]

    Lin M, Fang L M 2009 Acta Phys. Sin. 58 2136 (in Chinese) [林敏, 方利民 2009 物理学报 58 2136]

    [5]

    Yang J H, Liu X B 2010 Chin. Phys. B 19 050504

    [6]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998 Rev. Modern Phys. 70 223

    [7]

    Huang F, Liu F 2005 The ANZIAM J. 46 317

    [8]

    Liu F, Turner I, Anh V 2003 J. Appl. Math. Comp. 13 233

    [9]

    Wheatcraft S W, Benson D A, Meerschaert M M 2000 Water Resour. Res. 36 1403

    [10]

    De Andrade M F, Lenzi E K, Evangelista L R, Mendes R S, Malacarne L C 2005 Phys. Lett. A 347 160

    [11]

    Kenkre V M, Kus M, Dunlap D H, Parris P E 1998 Phys. Rev. E 58 99

    [12]

    Dong X J 2009 Chin. Phys. B 18 70

    [13]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [14]

    Podlubny I 1999 Fractional Differential Equations (San Diegop, CA: Academic Press)

    [15]

    Samko S G, Kilbas A A, Marichev O I 1993 Marichev, Fractional Integrals and Derivatives Theory and Applications (New York, Gordon and Breach Science Publ.)

    [16]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [17]

    Kou S C, X Sunney X 2004 Phys. Rev. Lett. 93 180603

    [18]

    Kou S C 2008 Ann. Appl. Statistics 2 501

    [19]

    Hill T 1986 An Introduction to Statistical Thermodynamics (New York: Dover)

    [20]

    Ahmed E, Elgazzar A S 2007 Physica A 379 607

    [21]

    Tarasov V E 2009 J. Phys. A: Math. Theor. 42 465102

    [22]

    Tarasov V E 2009 J. Math. Phys. 50 122703

    [23]

    Goychuk I, Hanggi P 2003 Phys. Rev. Lett. 91 70601

    [24]

    Fauve S, Hesolt F 1983 Phys. Lett. A 97 5

  • [1]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p80 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京:科学出版社) 第80页]

    [2]

    Deng W H, Barkai E 2009 Phys. Rev. E 79 011112

    [3]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 L453

    [4]

    Lin M, Fang L M 2009 Acta Phys. Sin. 58 2136 (in Chinese) [林敏, 方利民 2009 物理学报 58 2136]

    [5]

    Yang J H, Liu X B 2010 Chin. Phys. B 19 050504

    [6]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998 Rev. Modern Phys. 70 223

    [7]

    Huang F, Liu F 2005 The ANZIAM J. 46 317

    [8]

    Liu F, Turner I, Anh V 2003 J. Appl. Math. Comp. 13 233

    [9]

    Wheatcraft S W, Benson D A, Meerschaert M M 2000 Water Resour. Res. 36 1403

    [10]

    De Andrade M F, Lenzi E K, Evangelista L R, Mendes R S, Malacarne L C 2005 Phys. Lett. A 347 160

    [11]

    Kenkre V M, Kus M, Dunlap D H, Parris P E 1998 Phys. Rev. E 58 99

    [12]

    Dong X J 2009 Chin. Phys. B 18 70

    [13]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [14]

    Podlubny I 1999 Fractional Differential Equations (San Diegop, CA: Academic Press)

    [15]

    Samko S G, Kilbas A A, Marichev O I 1993 Marichev, Fractional Integrals and Derivatives Theory and Applications (New York, Gordon and Breach Science Publ.)

    [16]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [17]

    Kou S C, X Sunney X 2004 Phys. Rev. Lett. 93 180603

    [18]

    Kou S C 2008 Ann. Appl. Statistics 2 501

    [19]

    Hill T 1986 An Introduction to Statistical Thermodynamics (New York: Dover)

    [20]

    Ahmed E, Elgazzar A S 2007 Physica A 379 607

    [21]

    Tarasov V E 2009 J. Phys. A: Math. Theor. 42 465102

    [22]

    Tarasov V E 2009 J. Math. Phys. 50 122703

    [23]

    Goychuk I, Hanggi P 2003 Phys. Rev. Lett. 91 70601

    [24]

    Fauve S, Hesolt F 1983 Phys. Lett. A 97 5

  • [1] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振. 物理学报, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [2] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象. 物理学报, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振. 物理学报, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [5] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性. 物理学报, 2013, 62(7): 070501. doi: 10.7498/aps.62.070501
    [6] 田祥友, 冷永刚, 范胜波. 一阶线性系统的调参随机共振研究. 物理学报, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [7] 杨建华, 刘先斌. 线性时滞反馈引起的周期性振动共振分析. 物理学报, 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [8] 林敏, 黄咏梅. 双稳系统随机共振的能量输入机理 . 物理学报, 2012, 61(22): 220205. doi: 10.7498/aps.61.220205
    [9] 钟苏川, 高仕龙, 韦鹍, 马洪. 线性过阻尼分数阶Langevin方程的共振行为. 物理学报, 2012, 61(17): 170501. doi: 10.7498/aps.61.170501
    [10] 林敏, 张美丽, 黄咏梅. 双稳系统的随机能量共振和作功效率. 物理学报, 2011, 60(8): 080509. doi: 10.7498/aps.60.080509
    [11] 冷永刚. 双稳调参高频共振机理. 物理学报, 2011, 60(2): 020503. doi: 10.7498/aps.60.020503
    [12] 林灵, 闫勇, 梅冬成. 时间延迟增强双稳系统的共振抑制. 物理学报, 2010, 59(4): 2240-2243. doi: 10.7498/aps.59.2240
    [13] 林敏, 孟莹. 双稳系统的频率耦合与随机共振机理. 物理学报, 2010, 59(6): 3627-3632. doi: 10.7498/aps.59.3627
    [14] 林敏, 方利民. 双稳系统演化的时间尺度与随机共振的加强. 物理学报, 2009, 58(4): 2136-2140. doi: 10.7498/aps.58.2136
    [15] 郭立敏, 徐 伟, 阮春蕾, 赵 燕. 二值噪声驱动下二阶线性系统的随机共振. 物理学报, 2008, 57(12): 7482-7486. doi: 10.7498/aps.57.7482
    [16] 林 敏, 黄咏梅, 方利民. 双稳系统随机共振的反馈控制. 物理学报, 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [17] 彭建华, 于洪洁. 神经系统中随机和混沌感知信号的联想记忆与分割. 物理学报, 2007, 56(8): 4353-4360. doi: 10.7498/aps.56.4353
    [18] 冷永刚, 王太勇, 郭 焱, 汪文津, 胡世广. 级联双稳系统的随机共振特性. 物理学报, 2005, 54(3): 1118-1125. doi: 10.7498/aps.54.1118
    [19] 冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭 焱. 二次采样随机共振频谱研究与应用初探. 物理学报, 2004, 53(3): 717-723. doi: 10.7498/aps.53.717
    [20] 肖方红, 闫桂荣, 韩雨航. 双稳随机动力系统信号调制噪声效应的数值分析. 物理学报, 2004, 53(2): 396-400. doi: 10.7498/aps.53.396
计量
  • 文章访问数:  5722
  • PDF下载量:  1072
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-11
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

过阻尼分数阶Langevin方程及其随机共振

  • 1. 四川大学数学学院, 成都 610064;
  • 2. 乐山师范学院数学与信息科学学院, 乐山 614000
    基金项目: 国家自然科学基金重点项目(批准号: 10731050)和中国博士后科学基金 (批准号: 20100471651, 201104693)资助的课题.

摘要: 通过对广义Langevin方程阻尼核函数的适当选取,在过阻尼的情形下, 推导出分数阶Langevin方程.给合反常扩散理论和分数阶导数的记忆性, 讨论了分数阶Langevin方程的物理意义,进而得出分数阶Langevin方程产生随机共振的内在机理.数值模拟表明,在一定的阶数范围内,分数阶Langevin方程可以产生随机共振, 并且分数阶下的信噪比增益好于整数阶情形.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回