搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含记忆阻尼函数的周期势系统随机共振

许鹏飞 公徐路 李毅伟 靳艳飞

引用本文:
Citation:

含记忆阻尼函数的周期势系统随机共振

许鹏飞, 公徐路, 李毅伟, 靳艳飞

Stochastic resonance in periodic potential system with memory damping function

Xu Peng-Fei, Gong Xu-Lu, Li Yi-Wei, Jin Yan-Fei
PDF
HTML
导出引用
  • 研究了外部周期信号和内部噪声共同激励下, 含记忆阻尼函数的周期势系统的随机共振. 针对具有多稳态特征的周期势系统, 推导出适用于一般多稳态模型的系统响应振幅和功率谱放大因子. 研究结果表明, 功率谱放大因子随温度的变化曲线出现单峰, 说明含记忆阻尼函数的周期势系统存在随机共振现象, 并且系统的记忆特性和稳态点数量对共振行为有着显著影响. 此外, 利用随机能量法进一步分析了系统的随机共振现象, 发现共振效应随着记忆时间的增加先减弱再增强. 在适当的温度条件下, 存在最优记忆时间可以最大化外部周期力对系统所做的功.
    The stochastic dynamical system with memory effects describes a non-Markovian process that can happen in some complex systems or disordered media, such as viscoelastic media and living cell. Its velocity yields the memory effects because of the nonlocality in time, giving rise to a generalized Langevin equation for describing the dynamics of the system. In particular, the friction term in generalized Langevin equation is given by the time-dependent memory kernel. Besides, the research of stochastic resonance in periodic potential models emerges as an important subject because such systems have potential applications in diverse areas of natural sciences. However, the analysis of the influence of memory on stochastic resonance has not been reported so far in periodic potential model. In this paper, the phenomenon of stochastic resonance is investigated in the periodic potential system with friction memory kernel driven by an external periodic signal and internal noise. The generalized Langevin equation is converted into the three-dimensional Markovian Langevin equations. Analytical expression for the spectral amplification, together with the amplitude of the response, is derived in the periodic potential with an arbitrary number of simultaneously stable steady states, which can be applied to the general multi-stable dynamical model. The obtained results indicate that the curve of spectral amplification versus temperature exhibits a pronounced peak. Obviously, this typical phenomenon is a signature of stochastic resonance. The stochastic resonance effect is enhanced with the increase of the memory time or the number of stable steady states. For a certain range of the particle motion, the existence of an optimal number of stable steady states for which the output of the system can be maximized is established. Moreover, the phenomenon of stochastic resonance is studied according to the stochastic energetics. The average input energy per period is calculated over all the trajectories for quantifying stochastic resonance. It is found that the stochastic resonance effect is first weakened and then enhanced with increasing memory time. Specifically, under appropriate temperature conditions, there is an optimal memory time, which can maximize the work done by the external periodic force on the system.
      通信作者: 靳艳飞, jinyf@bit.edu.cn
    • 基金项目: 山西省优秀博士来晋工作奖励资金科研项目(批准号: SXBYKY2021081)、山西农业大学博士科研启动项目(批准号: 2021BQ12)、山西农业大学青年科技创新基金(批准号: 2019019, 2020QC04)和北京理工大学研究生教研教改项目资助的课题.
      Corresponding author: Jin Yan-Fei, jinyf@bit.edu.cn
    • Funds: Project supported by the Excellent Talents Coming to Shanxi Reward Scientific Research Project, China (Grant No. SXBYKY2021081), the Starting Foundation of Scientific Research for the Doctor of Shanxi Agricultural University, China (Grant No. 2021BQ12), the Science and Technology Innovation Foundation for Young Scientists of Shanxi Agricultural University, China (Grant Nos. 2019019, 2020QC04), and the Teaching Reform Project for Postgraduate of Beijing Institute of Technology, China.
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453Google Scholar

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223Google Scholar

    [3]

    Nicolis C 2010 Phys. Rev. E 82 011139Google Scholar

    [4]

    Qiao Z J, Lei Y G, Li N P 2019 Mech. Syst. Sig. Process. 122 502Google Scholar

    [5]

    Goychuk I, Pöschel T 2020 New J. Phys. 22 113018Google Scholar

    [6]

    Mokshin A V, Yulmetyev R M, Hänggi P 2005 Phys. Rev. Lett. 95 200601Google Scholar

    [7]

    Despósito M A, Pallavicini C, Levi V, Bruno L 2011 Physica A 390 1026Google Scholar

    [8]

    Tolić-Nørrelykke I M, Munteanu E L, Thon G, Oddershede L, Berg-Sørensen K 2004 Phys. Rev. Lett. 93 078102Google Scholar

    [9]

    Viñales A D, Despósito M A 2006 Phys. Rev. E 73 016111Google Scholar

    [10]

    Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104Google Scholar

    [11]

    Goychuk I 2010 Chem. Phys. 375 450Google Scholar

    [12]

    Wang K G, Masoliver J 1996 Physica A 231 615Google Scholar

    [13]

    Xu P F, Jin Y F 2020 Chaos, Solitons & Fractals 138 109857Google Scholar

    [14]

    Kumar N 2012 Phys. Rev. E 85 011114Google Scholar

    [15]

    Kubo R, Toda M, Hashitsume N 1985 Statistical Physics II: Non-equilibrium Statistical Mechanics (Berlin: Springer-Verlag) p31

    [16]

    Goswami G, Mukherjee B, Bag B C 2005 Chem. Phys. 312 47Google Scholar

    [17]

    Hohenegger C, Durr R, Senter D M 2017 J. Non-Newton. Fluid 242 48Google Scholar

    [18]

    Zhong S C, Zhang L, Wang H Q, Ma H, Luo M K 2017 Nonlinear Dyn. 89 1327Google Scholar

    [19]

    谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞 2014 物理学报 63 100502Google Scholar

    Xie W X, Li D P, Xu P F, Cai L, Jin Y F 2014 Acta Phys. Sin. 63 100502Google Scholar

    [20]

    He G T, Guo D L, Tian Y, Li T J, Luo M K 2017 Physica A 484 91Google Scholar

    [21]

    Hasegawa H 2013 Physica A 392 2532Google Scholar

    [22]

    Srokowski T 2013 Eur. Phys. J. B 86 239Google Scholar

    [23]

    Coffey W T, Kalmykov Y P, Massawe E S 1993 Phys. Rev. E 48 77Google Scholar

    [24]

    Elston T C, Peskin C S 2000 SIAM J. Appl. Math. 60 842Google Scholar

    [25]

    Hänggi P, Bartussek R, Talkner P, Łuczka J 1996 Europhys. Lett. 35 315Google Scholar

    [26]

    Reenbohn W L, Mahato M C 2015 Phys. Rev. E 91 052151Google Scholar

    [27]

    Li J H 2010 J. Phys. Condens. Mater. 22 115702Google Scholar

    [28]

    Jin Y F, Ma Z M, Xiao S M 2017 Chaos, Solitons & Fractals 103 470Google Scholar

    [29]

    Saikia S 2014 Physica A 416 411Google Scholar

    [30]

    Reenbohn W L, Pohlong S S, Mahato M C 2012 Phys. Rev. E 85 031144Google Scholar

    [31]

    谢勇, 刘若男 2017 物理学报 66 120501Google Scholar

    Xie Y, Liu R N 2017 Acta Phys. Sin. 66 120501Google Scholar

    [32]

    Sawkmie I S, Mahato M C 2019 Commun. Nonlinear Sci. Numer. Simul. 78 104859Google Scholar

    [33]

    Liu R N, Kang Y M 2018 Phys. Lett. A 382 1656Google Scholar

    [34]

    Liu K H, Jin Y F 2013 Physica A 392 5283Google Scholar

    [35]

    Neiman A, Sung W 1996 Phys. Lett. A 223 341Google Scholar

    [36]

    Bao J D, Bai Z W 2005 Chin. Phys. Lett. 22 1845Google Scholar

    [37]

    康艳梅, 徐健学, 谢勇 2003 物理学报 52 802Google Scholar

    Kang Y M, Xu J X, Xie Y 2003 Acta Phys. Sin. 52 802Google Scholar

    [38]

    Nicolis C 2012 Phys. Rev. E 86 011133Google Scholar

    [39]

    Dykman M I, Haken H, Hu G, Luchinsky D G, Mannella R, Mcclintock P V E, Ning C Z, Stein N D, Stocks N G 1993 Phys. Lett. A 180 332Google Scholar

    [40]

    Jin Y F 2012 Physica A 391 1928Google Scholar

  • 图 1  (a)周期势函数; (b)离散的多稳态过程

    Fig. 1.  (a) Periodic potential; (b) discrete multi-stable process.

    图 2  记忆时间$ {\tau _c} $对随机共振的影响 (a) 功率谱放大因子$ {\eta _1} $随温度T的变化曲线($ n = 6 $); (b)第i个稳态点对应的响应振幅$ {r_i} $的变化曲线. 其他参数取值为$\varGamma = 4$, ${\gamma _0} = $$ 1$, $ \omega = 0.001 $$ {m_0} = 1 $

    Fig. 2.  The effects of memory time $ {\tau _c} $ on stochastic resonance: (a) Spectral amplification $ {\eta _1} $versus temperature T; (b) amplitude of the response $ {r_i} $ versus i. Other parameter values are chosen as $\varGamma = 4$, $ {\gamma _0} = 1 $, $ \omega = 0.001 $ and $ {m_0} = 1 $.

    图 3  功率谱密度(PSD)作为频率的函数曲线 (a)不同的温度T$ {\tau _c} = 1 $; (b)不同的记忆时间$ {\tau _c} $$ T = 0.75 $. 其他参数取值为$\varGamma = 4$, $ {\gamma _0} = 1 $, $ {\varepsilon _0} = 0.3 $, $ \omega = 0.001 $$ {m_0} = 1 $

    Fig. 3.  Power spectrum density (PSD) of the system as a function of frequency with different values of (a) temperature T ($ {\tau _c} = 1 $); (b) memory time $ {\tau _c} $ ($ T = 0.75 $). Other parameter values are chosen as $\varGamma = 4$, $ {\gamma _0} = 1 $, $ {\varepsilon _0} = 0.3 $, $ \omega = 0.001 $ and $ {m_0} = 1 $.

    图 4  稳态点个数n对随机共振的影响 (a)功率谱放大因子$ {\eta _1} $随温度T的变化曲线; (b)响应振幅$ {r_1} $T的变化曲线; (c)响应振幅$ {r_2} $T的变化曲线. 其他参数取值为$ {\tau _c} = 3 $, $\varGamma = 5$, $ {\gamma _0} = 1 $, $ \omega = 0.001 $$ {m_0} = 1 $

    Fig. 4.  The effects of the number of stable steady states n on stochastic resonance: (a) Spectral amplification $ {\eta _1} $ versus temperature T; (b) amplitude of the response $ {r_1} $ versus T; (c) amplitude of the response $ {r_2} $ versus T. Other parameter values are chosen as $ {\tau _c} = 3 $, $\varGamma = 5$, $ {\gamma _0} = 1 $, $ \omega = 0.001 $ and $ {m_0} = 1 $.

    图 5  功率谱放大因子$ {\eta _1} $作为区间内稳态点个数n的函数曲线 (a)不同的区间长度L$\varGamma = 3$; (b)不同的记忆强度Γ和固定的长度$ L = 10 $. 其他参数取值为$ {\tau _c} = 4 $, ${\gamma _0} = $$ 1$, $ \omega = 0.002 $$ T = 0.8 $

    Fig. 5.  Spectral amplification $ {\eta _1} $ versus the number of stable steady states n with different values of (a) interval length L ($\varGamma = 3$) and (b) memory strength Γ ($ L = 10 $). Other parameter values are chosen as $ {\tau _c} = 4 $, $ {\gamma _0} = 1 $, $ \omega = 0.002 $ and $ T = 0.8 $.

    图 6  平均输入能量$ \overline W $作为初始位置$ x(0) $的函数随不同温度T的变化情况, 黑色线代表系统的输入信号$ {\varepsilon _0}\cos (\omega t) $ (a) T = 0.001; (b) T = 0.003; (c) T = 0.009; (d) T = 0.018. 其他参数取值为$ {\tau _c} = 2.3 $, $ {\gamma _0} = 0.12 $, $\varGamma = 0.02$$ \omega = {\pi {\left/ {\vphantom {\pi 4}} \right.} 4} $

    Fig. 6.  Average input energy $ \overline W $ averaged over an entire trajectory with initial position $ x(0) $ for different values of temperature T, where the black line denotes the input signal $ {\varepsilon _0}\cos (\omega t) $: (a) T = 0.001; (b) T = 0.003; (c) T = 0.009; (d) T = 0.018. Other parameter values are chosen as $ {\tau _c} = 2.3 $, $ {\gamma _0} = 0.12 $, $\varGamma = 0.02$ and $ \omega = {\pi {\left/ {\vphantom {\pi 4}} \right. } 4} $.

    图 7  记忆强度Γ对输入能量的影响 (a)平均输入能量$ \left\langle {\overline W } \right\rangle $随温度T的变化曲线; (b)相位差$\overline \varPhi$T的变化曲线. 其他参数取值为$ {\tau _c} = 2.3 $, $ {\gamma _0} = 0.12 $$ \omega = {\pi {\left/ {\vphantom {\pi 4}} \right. } 4} $

    Fig. 7.  The effects of memory strength Γ on input energy: (a) Average input energy $ \left\langle {\overline W } \right\rangle $ versus temperature T; (b) phase lag $\overline \varPhi$ versus T. Other parameter values are chosen as $ {\tau _c} = 2.3 $, $ {\gamma _0} = 0.12 $ and $ \omega = {\pi {\left/ {\vphantom {\pi 4}} \right. } 4} $.

    图 8  记忆时间$ {\tau _c} $对输入能量的影响 (a)$ \left\langle {\overline W } \right\rangle $T的变化曲线; (b)$ \left\langle {\overline W } \right\rangle $$ {\tau _c} $的变化曲线. 其他参数取值为$ \varGamma = 0.7 $, $ {\gamma _0} = 0.12 $$ \omega = {\pi {\left/ {\vphantom {\pi 4}} \right. } 4} $

    Fig. 8.  The effects of memory time $ {\tau _{\rm{c}}} $ on input energy: (a) $ \left\langle {\overline W } \right\rangle $ versus T; (b) $ \left\langle {\overline W } \right\rangle $ versus $ {\tau _c} $. Other parameter values are chosen as $\varGamma = 0.7$, $ {\gamma _0} = 0.12 $ and $ \omega = {\pi {\left/ {\vphantom {\pi 4}} \right. } 4} $.

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453Google Scholar

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223Google Scholar

    [3]

    Nicolis C 2010 Phys. Rev. E 82 011139Google Scholar

    [4]

    Qiao Z J, Lei Y G, Li N P 2019 Mech. Syst. Sig. Process. 122 502Google Scholar

    [5]

    Goychuk I, Pöschel T 2020 New J. Phys. 22 113018Google Scholar

    [6]

    Mokshin A V, Yulmetyev R M, Hänggi P 2005 Phys. Rev. Lett. 95 200601Google Scholar

    [7]

    Despósito M A, Pallavicini C, Levi V, Bruno L 2011 Physica A 390 1026Google Scholar

    [8]

    Tolić-Nørrelykke I M, Munteanu E L, Thon G, Oddershede L, Berg-Sørensen K 2004 Phys. Rev. Lett. 93 078102Google Scholar

    [9]

    Viñales A D, Despósito M A 2006 Phys. Rev. E 73 016111Google Scholar

    [10]

    Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104Google Scholar

    [11]

    Goychuk I 2010 Chem. Phys. 375 450Google Scholar

    [12]

    Wang K G, Masoliver J 1996 Physica A 231 615Google Scholar

    [13]

    Xu P F, Jin Y F 2020 Chaos, Solitons & Fractals 138 109857Google Scholar

    [14]

    Kumar N 2012 Phys. Rev. E 85 011114Google Scholar

    [15]

    Kubo R, Toda M, Hashitsume N 1985 Statistical Physics II: Non-equilibrium Statistical Mechanics (Berlin: Springer-Verlag) p31

    [16]

    Goswami G, Mukherjee B, Bag B C 2005 Chem. Phys. 312 47Google Scholar

    [17]

    Hohenegger C, Durr R, Senter D M 2017 J. Non-Newton. Fluid 242 48Google Scholar

    [18]

    Zhong S C, Zhang L, Wang H Q, Ma H, Luo M K 2017 Nonlinear Dyn. 89 1327Google Scholar

    [19]

    谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞 2014 物理学报 63 100502Google Scholar

    Xie W X, Li D P, Xu P F, Cai L, Jin Y F 2014 Acta Phys. Sin. 63 100502Google Scholar

    [20]

    He G T, Guo D L, Tian Y, Li T J, Luo M K 2017 Physica A 484 91Google Scholar

    [21]

    Hasegawa H 2013 Physica A 392 2532Google Scholar

    [22]

    Srokowski T 2013 Eur. Phys. J. B 86 239Google Scholar

    [23]

    Coffey W T, Kalmykov Y P, Massawe E S 1993 Phys. Rev. E 48 77Google Scholar

    [24]

    Elston T C, Peskin C S 2000 SIAM J. Appl. Math. 60 842Google Scholar

    [25]

    Hänggi P, Bartussek R, Talkner P, Łuczka J 1996 Europhys. Lett. 35 315Google Scholar

    [26]

    Reenbohn W L, Mahato M C 2015 Phys. Rev. E 91 052151Google Scholar

    [27]

    Li J H 2010 J. Phys. Condens. Mater. 22 115702Google Scholar

    [28]

    Jin Y F, Ma Z M, Xiao S M 2017 Chaos, Solitons & Fractals 103 470Google Scholar

    [29]

    Saikia S 2014 Physica A 416 411Google Scholar

    [30]

    Reenbohn W L, Pohlong S S, Mahato M C 2012 Phys. Rev. E 85 031144Google Scholar

    [31]

    谢勇, 刘若男 2017 物理学报 66 120501Google Scholar

    Xie Y, Liu R N 2017 Acta Phys. Sin. 66 120501Google Scholar

    [32]

    Sawkmie I S, Mahato M C 2019 Commun. Nonlinear Sci. Numer. Simul. 78 104859Google Scholar

    [33]

    Liu R N, Kang Y M 2018 Phys. Lett. A 382 1656Google Scholar

    [34]

    Liu K H, Jin Y F 2013 Physica A 392 5283Google Scholar

    [35]

    Neiman A, Sung W 1996 Phys. Lett. A 223 341Google Scholar

    [36]

    Bao J D, Bai Z W 2005 Chin. Phys. Lett. 22 1845Google Scholar

    [37]

    康艳梅, 徐健学, 谢勇 2003 物理学报 52 802Google Scholar

    Kang Y M, Xu J X, Xie Y 2003 Acta Phys. Sin. 52 802Google Scholar

    [38]

    Nicolis C 2012 Phys. Rev. E 86 011133Google Scholar

    [39]

    Dykman M I, Haken H, Hu G, Luchinsky D G, Mannella R, Mcclintock P V E, Ning C Z, Stein N D, Stocks N G 1993 Phys. Lett. A 180 332Google Scholar

    [40]

    Jin Y F 2012 Physica A 391 1928Google Scholar

  • [1] 谢勇, 刘若男. 过阻尼搓板势系统的随机共振. 物理学报, 2017, 66(12): 120501. doi: 10.7498/aps.66.120501
    [2] 焦尚彬, 孙迪, 刘丁, 谢国, 吴亚丽, 张青. 稳定噪声下一类周期势系统的振动共振. 物理学报, 2017, 66(10): 100501. doi: 10.7498/aps.66.100501
    [3] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究. 物理学报, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [4] 赖志慧, 冷永刚. 三稳系统的动态响应及随机共振. 物理学报, 2015, 64(20): 200503. doi: 10.7498/aps.64.200503
    [5] 马正木, 靳艳飞. 二值噪声激励下欠阻尼周期势系统的随机共振. 物理学报, 2015, 64(24): 240502. doi: 10.7498/aps.64.240502
    [6] 季袁冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振. 物理学报, 2014, 63(16): 164302. doi: 10.7498/aps.63.164302
    [7] 谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振. 物理学报, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [8] 田艳, 黄丽, 罗懋康. 噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响. 物理学报, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [9] 赖志慧, 冷永刚, 范胜波. 级联双稳Duffing系统的随机共振研究. 物理学报, 2013, 62(7): 070503. doi: 10.7498/aps.62.070503
    [10] 林敏, 黄咏梅. 双稳系统随机共振的能量输入机理. 物理学报, 2012, 61(22): 220205. doi: 10.7498/aps.61.220205
    [11] 杨明, 李香莲, 吴大进. 单模激光系统随机共振的模拟研究. 物理学报, 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [12] 高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振. 物理学报, 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [13] 林敏, 孟莹. 双稳系统的频率耦合与随机共振机理. 物理学报, 2010, 59(6): 3627-3632. doi: 10.7498/aps.59.3627
    [14] 林 敏, 黄咏梅, 方利民. 耦合双稳系统的随机共振控制. 物理学报, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
    [15] 周丙常, 徐 伟. 关联噪声驱动的非对称双稳系统的随机共振. 物理学报, 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [16] 林 敏, 黄咏梅, 方利民. 双稳系统随机共振的反馈控制. 物理学报, 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [17] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [18] 宁丽娟, 徐 伟. 光学双稳系统中的随机共振. 物理学报, 2007, 56(4): 1944-1947. doi: 10.7498/aps.56.1944
    [19] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [20] 冷永刚, 王太勇, 郭 焱, 汪文津, 胡世广. 级联双稳系统的随机共振特性. 物理学报, 2005, 54(3): 1118-1125. doi: 10.7498/aps.54.1118
计量
  • 文章访问数:  3229
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-17
  • 修回日期:  2021-12-22
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回