Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A periodic vibrational resonance in the fractional-order bistable system

Yang Jian-Hua Ma Qiang Wu Cheng-Jin Liu Hou-Guang

Citation:

A periodic vibrational resonance in the fractional-order bistable system

Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Aperiodic signal is widely used in different engineering fields.It is important to detect or enhance a weak aperiodic signal.In this work,we investigate the aperiodic vibrational resonance (AVR) in a fractional-order bistable system excited by an aperiodic binary signal and a square waveform signal simultaneously.The weak aperiodic binary signal is the characteristic signal which usually carries the useful information.The square waveform signal is the auxiliary signal which is used to induce the AVR.By tuning the amplitude of the auxiliary signal,the AVR may occur and the aperiodic binary signal is enhanced.The occurrence of the AVR is measured by the cross-correlated coefficient between the input aperiodic binary signal and the output time series.When the cross-correlated coefficient achieves a large enough value, the AVR may occur and the weak aperiodic signal is enhanced excellently by the auxiliary signal.If the aperiodic binary signal has large pulse width and the system has small parameters (usually on the order of 1),the AVR can be realized by tuning the amplitude of the square waveform.If the aperiodic binary signal has small pulse width,the AVR cannot be realized in the system with small parameters directly.For this case,we realize the AVR by the re-scaled method and the twice sampling method separately.By the re-scaled method,through a scale transformation,the equivalent system with large system parameters can match the input characteristic signal with arbitrary small pulse width.When the re-scaled method is used,the scale parameter is a key factor.By the twice sampling method,the reconstructed characteristic signal after the twice sampling has a large pulse width.Then,it can match the original system with small system parameters.When the twice sampling method is used,the ratio of the twice sampling frequency to the first sampling frequency is a key factor.Although these two methods have different physical processes,they can achieve the same goal. The AVR also depends on the fractional-order value closely.Specifically,with the increase of the fractional-order,the resonance region in the cross-correlated coefficient curve turns wider.Moreover,the amplitude of the square waveform signal which induces the optimal AVR to turn larger.Simultaneously,the similarity between the optimal output and the input binary aperiodic signal is enhanced.The method and the results of this paper not only can be used to enhance the weak aperiodic binary signal but also have a certain reference value in processing other kinds of aperiodic signals, such as the linear or nonlinear frequency modulated signal,etc.Furthermore,the results in this paper also present rich dynamical behaviors of a fractional-order system and may provide reference value in the study of fractional-order systems.
      Corresponding author: Ma Qiang, maqiang@hebeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11672325), the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS023), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China.
    [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [2]

    Landa P S, McClintock P V 2000 J. Phys. A: Math. Gen. 33 L433

    [3]

    Collins J J, Chow C C, Capela A C, Imhoff T T 1996 Phys. Rev. E 54 5575

    [4]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [5]

    Yang J H, Sanjuán M A F, Liu H G, Litak G, Li X 2016 Commun. Nonlinear Sci. Numer. Simulat. 41 104

    [6]

    Yang J H 2017 Bifurcation and Resonance in Fractional-order Systems (Beijing: Science Press) (in Chinese) [杨建华2017 分数阶系统的分岔与共振 (北京: 科学出版社)]

    [7]

    Monje C A, Chen Y Q, Vinagre B M, Xue D, Feliu V 2010 Fractional-order Systems and Controls (London: Springer) p11

    [8]

    Blekhman I I 2000 Vibrational Mechanics (Singapore: World Scientific)

    [9]

    Thomsen J J 2003 Vibrations and Stability: Advanced theory, Analysis, and Tools (Berlin: Springer-Verlag) pp287-334

    [10]

    Thomsen J J 2002 J. Sound Vib. 253 807

    [11]

    Balachandran B, Magrab E B 2008 Vibrations (Australia: Cengage Learning) pp210-212

    [12]

    Hu H Y 2004 Foundation of Mechanical Vibration (Harbin: Harbin Institute of Technology Press) p26 (in Chinese) [胡海岩 2004 机械振动基础 (哈尔滨: 哈尔滨工业大学出版社) p26]

    [13]

    Palm W J 2005 System Dynamics (2nd Ed.) (New York: McGraw-Hill Higher Education) p498

    [14]

    Ogata K 2004 System Dynamics (4th Ed.) (New Jersey: Prentice Hall) pp384-388

    [15]

    Liu X, Liu H, Yang J, Litak G., Cheng G, Han S 2017 Mech. Sys. Signal Pr. 96 58

    [16]

    Huang D, Yang J, Zhang J, Liu H 2017 P. I. Mech. Eng. C-J. Mec. doi:0954406217719924

    [17]

    Yang J H, Sanjuán M A F, Liu H G 2017 J. Comput. Nonlin. Dyn. 12 051011

    [18]

    Liu H G, Liu X L, Yang J H, Sanjuán M A F, Cheng G 2017 Nonlinear Dynam. 89 2621

    [19]

    Magin R, Ortigueira M D, Podlubny I, Trujillo J 2011 Signal Process. 91 350

    [20]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [21]

    Leng Y G, Wang T Y, Guo Y, Xu Y G, Fan S B 2007 Mech. Syst. Signal Pr. 21 138

    [22]

    Li Q, Wang T, Leng Y, Wang W, Wang G 2007 Mech. Syst. Signal Pr. 21 2267

  • [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [2]

    Landa P S, McClintock P V 2000 J. Phys. A: Math. Gen. 33 L433

    [3]

    Collins J J, Chow C C, Capela A C, Imhoff T T 1996 Phys. Rev. E 54 5575

    [4]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [5]

    Yang J H, Sanjuán M A F, Liu H G, Litak G, Li X 2016 Commun. Nonlinear Sci. Numer. Simulat. 41 104

    [6]

    Yang J H 2017 Bifurcation and Resonance in Fractional-order Systems (Beijing: Science Press) (in Chinese) [杨建华2017 分数阶系统的分岔与共振 (北京: 科学出版社)]

    [7]

    Monje C A, Chen Y Q, Vinagre B M, Xue D, Feliu V 2010 Fractional-order Systems and Controls (London: Springer) p11

    [8]

    Blekhman I I 2000 Vibrational Mechanics (Singapore: World Scientific)

    [9]

    Thomsen J J 2003 Vibrations and Stability: Advanced theory, Analysis, and Tools (Berlin: Springer-Verlag) pp287-334

    [10]

    Thomsen J J 2002 J. Sound Vib. 253 807

    [11]

    Balachandran B, Magrab E B 2008 Vibrations (Australia: Cengage Learning) pp210-212

    [12]

    Hu H Y 2004 Foundation of Mechanical Vibration (Harbin: Harbin Institute of Technology Press) p26 (in Chinese) [胡海岩 2004 机械振动基础 (哈尔滨: 哈尔滨工业大学出版社) p26]

    [13]

    Palm W J 2005 System Dynamics (2nd Ed.) (New York: McGraw-Hill Higher Education) p498

    [14]

    Ogata K 2004 System Dynamics (4th Ed.) (New Jersey: Prentice Hall) pp384-388

    [15]

    Liu X, Liu H, Yang J, Litak G., Cheng G, Han S 2017 Mech. Sys. Signal Pr. 96 58

    [16]

    Huang D, Yang J, Zhang J, Liu H 2017 P. I. Mech. Eng. C-J. Mec. doi:0954406217719924

    [17]

    Yang J H, Sanjuán M A F, Liu H G 2017 J. Comput. Nonlin. Dyn. 12 051011

    [18]

    Liu H G, Liu X L, Yang J H, Sanjuán M A F, Cheng G 2017 Nonlinear Dynam. 89 2621

    [19]

    Magin R, Ortigueira M D, Podlubny I, Trujillo J 2011 Signal Process. 91 350

    [20]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [21]

    Leng Y G, Wang T Y, Guo Y, Xu Y G, Fan S B 2007 Mech. Syst. Signal Pr. 21 138

    [22]

    Li Q, Wang T, Leng Y, Wang W, Wang G 2007 Mech. Syst. Signal Pr. 21 2267

  • [1] Wang Zhong-Qiu, Yang Jian-Hua. Aperiodic resonance of a nonlinear system excited by aperiodic binary signal or M-ary signal. Acta Physica Sinica, 2023, 72(22): 222501. doi: 10.7498/aps.72.20231154
    [2] Peng Hao, Ren Rui-Bin, Zhong Yang-Fan, Yu Tao. Stochastic resonance of fractional-order coupled system excited by trichotomous noise. Acta Physica Sinica, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] Research on Stochastic Resonance of Fractional-Order Coupled System Excited by Trichotomous Noise. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] Jiao Shang-Bin, Sun Di, Liu Ding, Xie Guo, Wu Ya-Li, Zhang Qing. Vibrational resonance in a periodic potential system with stable noise. Acta Physica Sinica, 2017, 66(10): 100501. doi: 10.7498/aps.66.100501
    [5] Liu Xiao-Jun, Hong Ling, Jiang Jun. Crises in a non-autonomous fractional-order Duffing system. Acta Physica Sinica, 2016, 65(18): 180502. doi: 10.7498/aps.65.180502
    [6] Guo Jing-Bo, Li Jia-Wen. Chaotic compressive measurement and reconstruction of binary signals. Acta Physica Sinica, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [7] Xue Kai-Jia, Wang Cong-Qing. Sliding mode control of fractional order chaotic system based on an online error correction adaptive SVR. Acta Physica Sinica, 2015, 64(7): 070502. doi: 10.7498/aps.64.070502
    [8] Yang Xiu-Ni, Yang Yun-Feng. Vibrational resonance in an asymmetric bistable system with time-delay feedback. Acta Physica Sinica, 2015, 64(7): 070507. doi: 10.7498/aps.64.070507
    [9] Sun Run-Zhi, Wang Zhi-Zhong, Wang Mao-Sheng, Zhang Ji-Qian. Vibrational resonance and nonlinear vibrational resonance in square-lattice neural system. Acta Physica Sinica, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [10] Tu Zhe, Lai Li, Luo Mao-Kang. Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [11] Zhang Lu, Xie Tian-Ting, Luo Mao-Kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [12] Yang Jian-Hua, Zhu Hua. The response property of one kind of factional-order linear system excited by different periodical signals. Acta Physica Sinica, 2013, 62(2): 024501. doi: 10.7498/aps.62.024501
    [13] Zhou Xue-Xue, Lai Li, Luo Mao-Kang. A new detecting method for periodic weak signals based on fractional order stopping oscillation system. Acta Physica Sinica, 2013, 62(9): 090501. doi: 10.7498/aps.62.090501
    [14] Li Li-Xiang, Peng Hai-Peng, Luo Qun, Yang Yi-Xian, Liu Zhe. Problem and analysis of stability decidable theory for a class of fractional order nonlinear system. Acta Physica Sinica, 2013, 62(2): 020502. doi: 10.7498/aps.62.020502
    [15] Hu Jian-Bing, Zhao Ling-Dong. Stability theorem and control of fractional systems. Acta Physica Sinica, 2013, 62(24): 240504. doi: 10.7498/aps.62.240504
    [16] Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [17] Yang Jian-Hua, Liu Hou-Guang, Cheng Gang. The pitchfork bifurcation and vibrational resonance in a quintic oscillator. Acta Physica Sinica, 2013, 62(18): 180503. doi: 10.7498/aps.62.180503
    [18] Yang Jian-Hua, Liu Xian-Bin. Analysis of periodic vibrational resonance induced by linear time delay feedback. Acta Physica Sinica, 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [19] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. A stability theorem about fractional systems and synchronizing fractional unified chaotic systems based on the theorem. Acta Physica Sinica, 2009, 58(7): 4402-4407. doi: 10.7498/aps.58.4402
    [20] Lin Min, Huang Yong-Mei. Stochastic resonance control based on vibration resonance. Acta Physica Sinica, 2007, 56(11): 6173-6177. doi: 10.7498/aps.56.6173
Metrics
  • Abstract views:  7019
  • PDF Downloads:  222
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2017
  • Accepted Date:  04 January 2018
  • Published Online:  05 March 2018

/

返回文章
返回