搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类五次方振子系统的叉形分叉及振动共振研究

杨建华 刘后广 程刚

引用本文:
Citation:

一类五次方振子系统的叉形分叉及振动共振研究

杨建华, 刘后广, 程刚

The pitchfork bifurcation and vibrational resonance in a quintic oscillator

Yang Jian-Hua, Liu Hou-Guang, Cheng Gang
PDF
导出引用
  • 研究了一类具有分数阶导数阻尼的五次方振子系统中的叉形分叉及振动共振现象. 基于快慢变量分离法, 消去系统中的高频激励成分, 得到关于慢变量的等效系统, 根据等效系统中稳态平衡点的变化情况研究了系统的叉形分叉现象. 结果表明: 高频信号幅值的递增变化会引起亚临界叉形分叉, 高频信号频率和分数阶导数阻尼阶数的递增变化都会引起超临界叉形分叉; 振动共振和叉形分叉是关联的, 当叉形分叉发生时, 振动共振曲线会出现两个峰值, 否则只会出现一个峰值. 通过解析结果和数值模拟结果的对比, 验证了解析分析的正确性.
    The pitchfork bifurcation and vibrational resonance are investigated in this paper. Based on the method of separating slow motion from fast motion, the equivalent equation to the slow motion is obtained. Then, the pitchfork bifurcation is studied. The results show that the amplitude of the high-frequency signal can induce the subcritical pitchfork bifurcation, while both the frequency of the high-frequency signal and the value of the fractional-order can induce supercritical pitchfork bifurcation. The pattern of the vibrational resonance depends on the pitchfork bifurcation. The vibrational resonance presents double-resonance pattern when the pitchfork bifurcation occurs. Or else, the vibrational resonance presents single-resonance pattern. The analytical predications are in good agreement with the numerical calculation results, which verifies the validity of the theoretical results.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:2012QNA21)和江苏省高校优势学科建设工程资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2012QNA21) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Landa P S, McClintock 2000 J. Phys. A 33 L433

    [2]

    Gitterman M 2001 J. Phys. A 34 L355

    [3]

    Blekhman I I, Landa P S 2004 Int. J. Non-Linear Mech. 39 421

    [4]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A F 2009 Phys. Rev. E 80 046608

    [5]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A F 2009 Chaos 19 043128

    [6]

    Baltanas J P, Lopez L, Blechman I I, Landa P S, Zaikin A, Kurths J, Sanjuan M A F 2003 Phys. Rev. E 67 066119

    [7]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [8]

    Chizhevsky V N, Giacomelli G 2006 Phys. Rev. E 73 22103

    [9]

    Yang J H, Liu X B 2010 J. Phys. A 43 122001

    [10]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [11]

    Yang J H, Liu X B 2010 Phys. Scr. 82 025006

    [12]

    Yang J H, Liu X B 2011 Phys. Scr. 83 065008

    [13]

    Jeevarathinam C, Rajasekar S, Sanjuan M A F 2011 Phys. Rev. E 83 066205

    [14]

    Lin M, Huang Y M 2007 Acta Phys. Sin. 56 6173 (in Chinese) [林敏, 黄咏梅 2007 物理学报 56 6173]

    [15]

    Deng B, Wang J, Wei X, Tsang K M, Chan W L 2010 Chaos 20 013113

    [16]

    Qin Y M, Wang J, Men C, Deng B, Wei X L 2011 Chaos 21 023133

    [17]

    Yu H, Wang J, Sun J, Yu H 2012 Chaos 22 033105

    [18]

    Sun J, Deng B, Liu C, Yu H, Wang J, Wei X, Zhao J 2013 Appl. Math. Model. 37 6311

    [19]

    Yang J H, Zhu H 2012 Chaos 22 013112

    [20]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [21]

    Monje C A, Chen Y, Vinagre B M, Xue D, Feliu V 2010 Fractional-order Systems and Controls (London: Springer)

    [22]

    Blekhman I I 2000 Vibrational Mechanics (Singapore: World Scientific)

    [23]

    Guckenheimer J, Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer-Verlag)

  • [1]

    Landa P S, McClintock 2000 J. Phys. A 33 L433

    [2]

    Gitterman M 2001 J. Phys. A 34 L355

    [3]

    Blekhman I I, Landa P S 2004 Int. J. Non-Linear Mech. 39 421

    [4]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A F 2009 Phys. Rev. E 80 046608

    [5]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A F 2009 Chaos 19 043128

    [6]

    Baltanas J P, Lopez L, Blechman I I, Landa P S, Zaikin A, Kurths J, Sanjuan M A F 2003 Phys. Rev. E 67 066119

    [7]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [8]

    Chizhevsky V N, Giacomelli G 2006 Phys. Rev. E 73 22103

    [9]

    Yang J H, Liu X B 2010 J. Phys. A 43 122001

    [10]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [11]

    Yang J H, Liu X B 2010 Phys. Scr. 82 025006

    [12]

    Yang J H, Liu X B 2011 Phys. Scr. 83 065008

    [13]

    Jeevarathinam C, Rajasekar S, Sanjuan M A F 2011 Phys. Rev. E 83 066205

    [14]

    Lin M, Huang Y M 2007 Acta Phys. Sin. 56 6173 (in Chinese) [林敏, 黄咏梅 2007 物理学报 56 6173]

    [15]

    Deng B, Wang J, Wei X, Tsang K M, Chan W L 2010 Chaos 20 013113

    [16]

    Qin Y M, Wang J, Men C, Deng B, Wei X L 2011 Chaos 21 023133

    [17]

    Yu H, Wang J, Sun J, Yu H 2012 Chaos 22 033105

    [18]

    Sun J, Deng B, Liu C, Yu H, Wang J, Wei X, Zhao J 2013 Appl. Math. Model. 37 6311

    [19]

    Yang J H, Zhu H 2012 Chaos 22 013112

    [20]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [21]

    Monje C A, Chen Y, Vinagre B M, Xue D, Feliu V 2010 Fractional-order Systems and Controls (London: Springer)

    [22]

    Blekhman I I 2000 Vibrational Mechanics (Singapore: World Scientific)

    [23]

    Guckenheimer J, Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer-Verlag)

  • [1] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式. 物理学报, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [2] 杨建华, 马强, 吴呈锦, 刘后广. 分数阶双稳系统中的非周期振动共振. 物理学报, 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [3] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [4] 焦尚彬, 孙迪, 刘丁, 谢国, 吴亚丽, 张青. 稳定噪声下一类周期势系统的振动共振. 物理学报, 2017, 66(10): 100501. doi: 10.7498/aps.66.100501
    [5] 杨秀妮, 杨云峰. 具有时滞反馈的非对称双稳系统中的振动共振研究. 物理学报, 2015, 64(7): 070507. doi: 10.7498/aps.64.070507
    [6] 孙润智, 汪治中, 汪茂胜, 张季谦. 二维格子神经元网络的振动共振和非线性振动共振. 物理学报, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [7] 李海涛, 秦卫阳, 周志勇, 蓝春波. 带有分数阶阻尼的压电能量采集系统相干共振. 物理学报, 2014, 63(22): 220504. doi: 10.7498/aps.63.220504
    [8] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振. 物理学报, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [9] 杨建华, 朱华. 不同周期信号激励下分数阶线性系统的响应特性分析. 物理学报, 2013, 62(2): 024501. doi: 10.7498/aps.62.024501
    [10] 钟苏川, 高仕龙, 韦鹍, 马洪. 线性过阻尼分数阶Langevin方程的共振行为. 物理学报, 2012, 61(17): 170501. doi: 10.7498/aps.61.170501
    [11] 高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振. 物理学报, 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [12] 杨建华, 刘先斌. 线性时滞反馈引起的周期性振动共振分析. 物理学报, 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [13] 李勇, 刘锦超, 芦鹏飞, 杨向东. 从常温常压到超临界乙醇的分子动力学模拟. 物理学报, 2010, 59(7): 4880-4887. doi: 10.7498/aps.59.4880
    [14] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [15] 林 敏, 黄咏梅. 基于振动共振的随机共振控制. 物理学报, 2007, 56(11): 6173-6177. doi: 10.7498/aps.56.6173
    [16] 王发强, 刘崇新. 分数阶临界混沌系统及电路实验的研究. 物理学报, 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
    [17] 张孝彬, 甘 波, 杨杭生, 齐仲甫, 李文铸, 张 泽. 纳米碳管的分叉结构. 物理学报, 1999, 48(5): 913-916. doi: 10.7498/aps.48.913
    [18] 吴顺光, 丁晓玲, 马明全, 殷岳才, 牛建军, 屈世显, 何大韧. 一个张弛振子的超临界子区域. 物理学报, 1999, 48(12): 2162-2168. doi: 10.7498/aps.48.2162
    [19] 王光瑞, 陈式刚. 超临界圆映象的混沌测度及其标度律. 物理学报, 1990, 39(11): 1705-1713. doi: 10.7498/aps.39.1705
    [20] 王光瑞. 带强迫振动项的三分子模型的倍周期分叉序列. 物理学报, 1983, 32(7): 960-972. doi: 10.7498/aps.32.960
计量
  • 文章访问数:  5160
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-08
  • 修回日期:  2013-06-06
  • 刊出日期:  2013-09-05

/

返回文章
返回