[1] |
Ma Jin-Long, Zhang Jun-Feng, Zhang Dong-Wen, Zhang Hong-Bin. Quantifying complex network traffic capacity based on communicability sequence entropy. Acta Physica Sinica,
2021, 70(7): 078902.
doi: 10.7498/aps.70.20201300
|
[2] |
Tan Suo-Yi, Qi Ming-Ze, Wu Jun, Lu Xin. Link predictability of complex network from spectrum perspective. Acta Physica Sinica,
2020, 69(8): 088901.
doi: 10.7498/aps.69.20191817
|
[3] |
Chen Dan, Shi Dan-Dan, Pan Gui-Jun. Correlation between the electrical transport performance and the communicability sequence entropy in complex networks. Acta Physica Sinica,
2019, 68(11): 118901.
doi: 10.7498/aps.68.20190230
|
[4] |
Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica,
2018, 67(9): 098901.
doi: 10.7498/aps.67.20172295
|
[5] |
Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica,
2015, 64(18): 188901.
doi: 10.7498/aps.64.188901
|
[6] |
Tang Zhou-Jin, Peng Tao, Wang Wen-Bo. A local least square support vector machine prediction algorithm of small scale network traffic based on correlation analysis. Acta Physica Sinica,
2014, 63(13): 130504.
doi: 10.7498/aps.63.130504
|
[7] |
Liang Yi, Wang Xing-Yuan. Chaotic synchronization in complex networks with delay nodes by non-delay and delay couplings. Acta Physica Sinica,
2013, 62(1): 018901.
doi: 10.7498/aps.62.018901
|
[8] |
Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica,
2013, 62(2): 020513.
doi: 10.7498/aps.62.020513
|
[9] |
Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan. Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica,
2012, 61(19): 190201.
doi: 10.7498/aps.61.190201
|
[10] |
Liang Yi, Wang Xing-Yuan. Pinning chaotic synchronization in complex networks on maximum eigenvalue of low order matrix. Acta Physica Sinica,
2012, 61(3): 038901.
doi: 10.7498/aps.61.038901
|
[11] |
Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica,
2012, 61(12): 120510.
doi: 10.7498/aps.61.120510
|
[12] |
Gao Xiang-Yun, An Hai-Zhong, Fang Wei. Research on fluctuation of bivariate correlation of time series based on complex networks theory. Acta Physica Sinica,
2012, 61(9): 098902.
doi: 10.7498/aps.61.098902
|
[13] |
LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu. Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica,
2012, 61(9): 090504.
doi: 10.7498/aps.61.090504
|
[14] |
Song Tong, Li Han. Chaotic time series prediction based on wavelet echo state network. Acta Physica Sinica,
2012, 61(8): 080506.
doi: 10.7498/aps.61.080506
|
[15] |
Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica,
2011, 60(3): 038901.
doi: 10.7498/aps.60.038901
|
[16] |
Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica,
2009, 58(3): 1462-1466.
doi: 10.7498/aps.58.1462
|
[17] |
Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica,
2007, 56(3): 1313-1317.
doi: 10.7498/aps.56.1313
|
[18] |
Han Min, Shi Zhi-Wei, Guo Wei. Reservoir neural state reconstruction and chaotic time series prediction. Acta Physica Sinica,
2007, 56(1): 43-50.
doi: 10.7498/aps.56.43
|
[19] |
Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica,
2006, 55(8): 4051-4057.
doi: 10.7498/aps.55.4051
|
[20] |
Hu Yu-Xia, Gao Jin-Feng. A neuro-fuzzy method for predicting the chaotic time series. Acta Physica Sinica,
2005, 54(11): 5034-5038.
doi: 10.7498/aps.54.5034
|