Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Link predictability of complex network from spectrum perspective

Tan Suo-Yi Qi Ming-Ze Wu Jun Lu Xin

Citation:

Link predictability of complex network from spectrum perspective

Tan Suo-Yi, Qi Ming-Ze, Wu Jun, Lu Xin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Link prediction in complex networks has attracted much attention in recent years and most of work focuses on proposing more accurate prediction algorithms. In fact, “how difficultly the target network can be predicted” can be regarded as an important attribute of the network itself. In this paper it is intended to explain and characterize the link predictability of the network from the perspective of spectrum. By analyzing the characteristic spectrum of the network, we propose the network link predictability index. Through calculating the index, it is possible to learn how difficultly the target network can be predicted before choosing algorithm, and to solve the problem whether the network is unpredictable or the algorithm is inappropriate. The results are useful for the selecting and matching the complex network and link prediction algorithms.
      Corresponding author: Wu Jun, wujunpla@hotmail.com ; Lu Xin, xin.lu@flowminder.org
    [1]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378Google Scholar

    [2]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [3]

    Newman M E J 2003 SIAM Rev. 45 167Google Scholar

    [4]

    Wang X F 2002 Int. J. Bifurcat. Chaos 12 885Google Scholar

    [5]

    侯绿林, 老松杨, 肖延东, 白亮 2015 物理学报 64 188901Google Scholar

    Hou L L, Lao S Y, Xiao Y D, Bai L 2015 Acta Phys. Sin. 64 188901Google Scholar

    [6]

    吕琳媛 2010 电子科技大学学报 39 651Google Scholar

    Lü L L 2010 J. Univ. Electron. Sci. Technol. China 39 651Google Scholar

    [7]

    吕琳媛, 周涛 2013 链路预测 (北京: 高等教育出版社) 第 41页

    Lü L L, Zhou T 2013 Link Prediction (Beijing: Higher Education Press) p41 (in Chinese)

    [8]

    Sarukkai R R 2010 Comput. Networking 33 377

    [9]

    Clauset A, Moore C, Newman M E J 2008 Nature 453 98Google Scholar

    [10]

    Guimerá R, Marta S P 2009 Proc. Natl. Acad. Sci. U.S.A. 106 22073Google Scholar

    [11]

    Pan L M, Zhou T, Lü L Y, Hu C K 2016 Sci. Rep. 6 22955Google Scholar

    [12]

    Taskar B, Wong M F, Abbeel P, Koller D 2003 Proceedings of the 16th International Conference on Neural Information Processing Systems (Cambridge: MIT Press) pp659–666

    [13]

    David L N, Kleinberg J 2007 J. Am. Soc. Inf. Sci. Technol. 58 1019Google Scholar

    [14]

    Zhou T, Lü L Y, Zhang Y C 2009 Eur. Phys. J. B 71 623Google Scholar

    [15]

    许小可, 方锦清 2010 复杂系统与复杂性科学 7 116Google Scholar

    Xu X K, Fang J Q 2010 Complex Syst. Complex Sci. 7 116Google Scholar

    [16]

    Tan S Y, Wu J, Lü L Y, Li M J, Lu X 2016 Sci. Rep. 6 22916Google Scholar

    [17]

    Amaral L A N 2008 Proc. Natl. Acad. Sci. U.S.A. 105 6795Google Scholar

    [18]

    Menche J, Sharma A, Kitsak M, Ghiassian S D, Vidal M, Loscalzo J, Barabási A L 2015 Science 347 1257601Google Scholar

    [19]

    Lü L Y, Medo M, Yeung C H, Zhang Y C, Zhang Z K, Zhou T 2012 Phys. Rep. 519 1Google Scholar

    [20]

    朱郁筱, 吕琳媛 2012 电子科技大学学报 41 163

    Zhou Y X, Lü L Y 2012 J. Univ. Electron. Sci. Technol. China 41 163

    [21]

    刘宏鲲, 吕琳媛, 周涛 2011 中国科学: 物理学 力学 天文学 41 816Google Scholar

    Liu H K, Lü L Y, Zhou T 2011 Scientia Sinica: Phys. Mech. Astron. 41 816Google Scholar

    [22]

    Zhang Q M, Lü L Y, Wang W Q, X Y, Zhou T 2013 PLoS One 8 1

    [23]

    Wang W Q, Zhang Q M, Zhou T 2012 EPL 98 28004Google Scholar

    [24]

    Zhang Q M, Xu X K, Zhu Y X, Zhou T 2015 Sci. Rep. 5 10350Google Scholar

    [25]

    Lü L Y, Zhou T 2011 Physica A 390 1150Google Scholar

    [26]

    于会, 刘尊, 李勇军, 尹超 2016 物理学报 65 020501Google Scholar

    Yu H, Liu Z, Li Y J, Yi C 2016 Acta Phys. Sin. 65 020501Google Scholar

    [27]

    许小可, 许爽, 朱郁筱, 张千明 2014 复杂系统与复杂性科学 11 41

    Xu X K, Xu S, Zhu Y X, Zhang Q M 2014 Complex Syst. Complex Sci. 11 41

    [28]

    Lü L Y, Pan L M, Zhou T, Zhang Y C, Stanley H E 2015 Proc. Natl. Acad. Sci. USA 112 2325Google Scholar

    [29]

    Yin L K, Zheng H Y, Bian T, Deng Y 2014 Physica A 482 699712

    [30]

    Hanley J A, McNeil B J 1982 Radiology 143 29Google Scholar

    [31]

    Herlocker J L, Konstan J A, Terveen L G, Riedl J T 2004 ACM Trans. Inf. Syst. 22 5Google Scholar

    [32]

    Zhou T, Ren J, Matúš M, Zhang Y C 2007 Phys. Rev. E 76 046115Google Scholar

    [33]

    Farkas I J, Derényi I, Barabási A L, Vicsek T 2001 Phys. Rev. E 64 026704Google Scholar

    [34]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [35]

    Newman M E J 2006 Phys. Rev. E 74 036104Google Scholar

    [36]

    Kousik D, Sovan S, Madhumangal P 2018 Soc. Netw. Anal. Min. 8 1Google Scholar

    [37]

    张金浩, 申玉卓, 李艳雨, 孙娟, 李晓霞 2017 物理学报 66 188901Google Scholar

    Zhang J H, Shen Y Z, Li Y Y, Sun J, Li X X 2017 Acta Phys. Sin. 66 188901Google Scholar

    [38]

    Wang R, Lin P, Liu M X, Wu Y, Zhou T, Zhou C S 2019 Phys. Rev. Lett. 123 038301Google Scholar

    [39]

    Estrada E 2006 EPL 73 649Google Scholar

    [40]

    Tan S Y, Wu J, Li M J, Lu X 2016 EPL 114 58002Google Scholar

    [41]

    Estrada E, Hatano N 2007 Chem. Phys. Lett. 439 247Google Scholar

  • 图 1  链路预测问题示意图

    Figure 1.  Illustration of link prediction problem

    图 2  无标度网络特征谱直方图

    Figure 2.  The histograms of eigenvalues of random sacle-free networks

    图 3  不同节点规模下, 模型网络可预测性$ p $$ \alpha $的变化

    Figure 3.  The link predictability of model network versus $ \alpha $ with various $ N $

    图 4  无标度网络和随机网络可预测性示意图

    Figure 4.  The link predictability of BA scale-free network and random graph

    图 5  预测算法在真实网络上的表现

    Figure 5.  The performance of prediction algorithms in real networks

    表 1  链路预测算法在模型网络中的表现

    Table 1.  Performance of link prediction algorithms in model networks.

    网络 $ p $ CN AA RA LP IA CAR PA Katz RWR ACT LRW LHN-II
    BA网络 0.975 0.423 0.324 0.272 0.415 0.271 0.283 0.594 0.412 0.136 0.507 0.085 0.003
    随机网络 0.543 0.015 0.008 0.009 0.008 0.009 0 0.030 0.008 0.002 0.020 0 0.001
    DownLoad: CSV

    表 2  不同领域真实网络拓扑属性

    Table 2.  Basic statistics of real networks.

    网络 V E r $\langle k\rangle$ $\langle l\rangle$ C
    C_elegans 297 2148 –0.163 14.47 2.46 0.308
    Windsurfers 43 336 –0.147 15.63 1.70 0.564
    Adolescent health 2539 12969 0.251 10.22 4.52 0.142
    Jazz 198 2742 0.020 27.69 2.21 0.520
    USAirport 1574 28236 –0.113 35.87 3.14 0.384
    Metabolic 453 4596 –0.226 20.29 2.64 0.124
    Yeast 2375 11693 0.454 9.85 5.10 0.388
    US powergrid 4941 6594 0.003 2.67 20.09 0.103
    Physicians 241 1098 –0.056 9.11 3.02 0.552
    Air Traffic Control 1226 2615 –0.015 4.27 6.10 0.063
    Contiguous USA 49 107 0.233 4.37 4.26 0.406
    Email 1133 5451 0.078 9.62 3.65 0.166
    King James Bible 1773 9131 –0.048 10.30 3.38 0.163
    Protein Stelzl 1706 6207 –0.191 7.28 5.09 0.006
    Router 5022 6258 –0.138 2.49 6.45 0.033
    DownLoad: CSV

    表 3  链路预测算法在真实网络中的precision值

    Table 3.  The precision of link prediction algorithms in real networks

    网络 p CN AA RA LP IA CAR PA Katz RWR ACT LRW SRW
    C_elegans 0.999 0.100 0.107 0.105 0.101 0.108 0.094 0.058 0.101 0.105 0.055 0.110 0.108
    Windsurfers 0.999 0.379 0.396 0.413 0.370 0.393 0.381 0.214 0.369 0.360 0.247 0.402 0.426
    Adolescent health 0.422 0.103 0.103 0.088 0.089 0.101 0.094 0.003 0.088 0.053 0.008 0.042 0.047
    Jazz 1.000 0.502 0.523 0.542 0.489 0.535 0.517 0.133 0.489 0.352 0.168 0.342 0.393
    USAirport 0.998 0.333 0.336 0.364 0.332 0.332 0.330 0.280 0.332 0.087 0.294 0.076 0.080
    Metabolic 0.999 0.137 0.195 0.269 0.141 0.168 0.132 0.104 0.141 0.196 0.092 0.214 0.215
    Yeast 0.998 0.154 0.177 0.267 0.158 0.161 0.148 0.094 0.174 0.073 0.211 0.045 0.059
    US powergrid 0.362 0.054 0.032 0.028 0.058 0.047 0.037 0.000 0.057 0.016 0.034 0.015 0.018
    Physicians 0.368 0.119 0.126 0.121 0.117 0.122 0.106 0.014 0.117 0.119 0.015 0.132 0.127
    Air Traffic Control 0.480 0.036 0.024 0.018 0.037 0.021 0.025 0.007 0.037 0.002 0.015 0.002 0.002
    Contiguous USA 0.540 0.096 0.130 0.132 0.005 0.000 0.000 0.012 0.004 0.067 0.053 0.133 0.121
    Email 0.950 0.144 0.158 0.143 0.142 0.159 0.145 0.018 0.141 0.065 0.024 0.052 0.051
    King James Bible 0.960 0.167 0.270 0.446 0.163 0.256 0.176 0.078 0.163 0.186 0.069 0.197 0.224
    Protein Stelzl 0.441 0.001 0.002 0.001 0.001 0.002 0.006 0.014 0.001 0.006 0.013 0.006 0.006
    Router 0.511 0.051 0.029 0.020 0.056 0.031 0.055 0.022 0.055 0.006 0.164 0.005 0.005
    DownLoad: CSV
  • [1]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378Google Scholar

    [2]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [3]

    Newman M E J 2003 SIAM Rev. 45 167Google Scholar

    [4]

    Wang X F 2002 Int. J. Bifurcat. Chaos 12 885Google Scholar

    [5]

    侯绿林, 老松杨, 肖延东, 白亮 2015 物理学报 64 188901Google Scholar

    Hou L L, Lao S Y, Xiao Y D, Bai L 2015 Acta Phys. Sin. 64 188901Google Scholar

    [6]

    吕琳媛 2010 电子科技大学学报 39 651Google Scholar

    Lü L L 2010 J. Univ. Electron. Sci. Technol. China 39 651Google Scholar

    [7]

    吕琳媛, 周涛 2013 链路预测 (北京: 高等教育出版社) 第 41页

    Lü L L, Zhou T 2013 Link Prediction (Beijing: Higher Education Press) p41 (in Chinese)

    [8]

    Sarukkai R R 2010 Comput. Networking 33 377

    [9]

    Clauset A, Moore C, Newman M E J 2008 Nature 453 98Google Scholar

    [10]

    Guimerá R, Marta S P 2009 Proc. Natl. Acad. Sci. U.S.A. 106 22073Google Scholar

    [11]

    Pan L M, Zhou T, Lü L Y, Hu C K 2016 Sci. Rep. 6 22955Google Scholar

    [12]

    Taskar B, Wong M F, Abbeel P, Koller D 2003 Proceedings of the 16th International Conference on Neural Information Processing Systems (Cambridge: MIT Press) pp659–666

    [13]

    David L N, Kleinberg J 2007 J. Am. Soc. Inf. Sci. Technol. 58 1019Google Scholar

    [14]

    Zhou T, Lü L Y, Zhang Y C 2009 Eur. Phys. J. B 71 623Google Scholar

    [15]

    许小可, 方锦清 2010 复杂系统与复杂性科学 7 116Google Scholar

    Xu X K, Fang J Q 2010 Complex Syst. Complex Sci. 7 116Google Scholar

    [16]

    Tan S Y, Wu J, Lü L Y, Li M J, Lu X 2016 Sci. Rep. 6 22916Google Scholar

    [17]

    Amaral L A N 2008 Proc. Natl. Acad. Sci. U.S.A. 105 6795Google Scholar

    [18]

    Menche J, Sharma A, Kitsak M, Ghiassian S D, Vidal M, Loscalzo J, Barabási A L 2015 Science 347 1257601Google Scholar

    [19]

    Lü L Y, Medo M, Yeung C H, Zhang Y C, Zhang Z K, Zhou T 2012 Phys. Rep. 519 1Google Scholar

    [20]

    朱郁筱, 吕琳媛 2012 电子科技大学学报 41 163

    Zhou Y X, Lü L Y 2012 J. Univ. Electron. Sci. Technol. China 41 163

    [21]

    刘宏鲲, 吕琳媛, 周涛 2011 中国科学: 物理学 力学 天文学 41 816Google Scholar

    Liu H K, Lü L Y, Zhou T 2011 Scientia Sinica: Phys. Mech. Astron. 41 816Google Scholar

    [22]

    Zhang Q M, Lü L Y, Wang W Q, X Y, Zhou T 2013 PLoS One 8 1

    [23]

    Wang W Q, Zhang Q M, Zhou T 2012 EPL 98 28004Google Scholar

    [24]

    Zhang Q M, Xu X K, Zhu Y X, Zhou T 2015 Sci. Rep. 5 10350Google Scholar

    [25]

    Lü L Y, Zhou T 2011 Physica A 390 1150Google Scholar

    [26]

    于会, 刘尊, 李勇军, 尹超 2016 物理学报 65 020501Google Scholar

    Yu H, Liu Z, Li Y J, Yi C 2016 Acta Phys. Sin. 65 020501Google Scholar

    [27]

    许小可, 许爽, 朱郁筱, 张千明 2014 复杂系统与复杂性科学 11 41

    Xu X K, Xu S, Zhu Y X, Zhang Q M 2014 Complex Syst. Complex Sci. 11 41

    [28]

    Lü L Y, Pan L M, Zhou T, Zhang Y C, Stanley H E 2015 Proc. Natl. Acad. Sci. USA 112 2325Google Scholar

    [29]

    Yin L K, Zheng H Y, Bian T, Deng Y 2014 Physica A 482 699712

    [30]

    Hanley J A, McNeil B J 1982 Radiology 143 29Google Scholar

    [31]

    Herlocker J L, Konstan J A, Terveen L G, Riedl J T 2004 ACM Trans. Inf. Syst. 22 5Google Scholar

    [32]

    Zhou T, Ren J, Matúš M, Zhang Y C 2007 Phys. Rev. E 76 046115Google Scholar

    [33]

    Farkas I J, Derényi I, Barabási A L, Vicsek T 2001 Phys. Rev. E 64 026704Google Scholar

    [34]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [35]

    Newman M E J 2006 Phys. Rev. E 74 036104Google Scholar

    [36]

    Kousik D, Sovan S, Madhumangal P 2018 Soc. Netw. Anal. Min. 8 1Google Scholar

    [37]

    张金浩, 申玉卓, 李艳雨, 孙娟, 李晓霞 2017 物理学报 66 188901Google Scholar

    Zhang J H, Shen Y Z, Li Y Y, Sun J, Li X X 2017 Acta Phys. Sin. 66 188901Google Scholar

    [38]

    Wang R, Lin P, Liu M X, Wu Y, Zhou T, Zhou C S 2019 Phys. Rev. Lett. 123 038301Google Scholar

    [39]

    Estrada E 2006 EPL 73 649Google Scholar

    [40]

    Tan S Y, Wu J, Li M J, Lu X 2016 EPL 114 58002Google Scholar

    [41]

    Estrada E, Hatano N 2007 Chem. Phys. Lett. 439 247Google Scholar

  • [1] Cui Jun-Ying, Xu Shu-Qi, Na Xu, Pan Li-Ming, Lü Lin-Yuan. Supply chain research based on complex network theory. Acta Physica Sinica, 2024, 73(19): 198901. doi: 10.7498/aps.73.20240702
    [2] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [3] Yang Qing-Lin, Wang Li-Fu, Li Huan, Yu Mu-Zhou. A spectral coarse graining algorithm based on relative distance. Acta Physica Sinica, 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848
    [4] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [5] Zhou Jian, Jia Zhen, Li Ke-Zan. Improved algorithm of spectral coarse graining method of complex network. Acta Physica Sinica, 2017, 66(6): 060502. doi: 10.7498/aps.66.060502
    [6] Wu Xi-Ping, Yang Hong-Yu, Han Song-Chen. Analysis on network properties of multivariate mixed air traffic management technical support system based on complex network theory. Acta Physica Sinica, 2016, 65(14): 140203. doi: 10.7498/aps.65.140203
    [7] Li Yong-Jun, Yin Chao, Yu Hui, Liu Zun. Link prediction in microblog retweet network based on maximum entropy model. Acta Physica Sinica, 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [8] Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [9] Yu Xiao-Ping, Pei Tao. Analysis on degree characteristics of mobile call network. Acta Physica Sinica, 2013, 62(20): 208901. doi: 10.7498/aps.62.208901
    [10] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [11] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [12] Liang Yi, Wang Xing-Yuan. Pinning chaotic synchronization in complex networks on maximum eigenvalue of low order matrix. Acta Physica Sinica, 2012, 61(3): 038901. doi: 10.7498/aps.61.038901
    [13] Gao Xiang-Yun, An Hai-Zhong, Fang Wei. Research on fluctuation of bivariate correlation of time series based on complex networks theory. Acta Physica Sinica, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [14] Gong Zhi-Qiang, Zhi Rong, Hou Wei, Wang Xiao-Juan, Feng Guo-Ling. Analysis of decadal characteristics of leading teleconnections based on complex networks theory. Acta Physica Sinica, 2012, 61(2): 029202. doi: 10.7498/aps.61.029202
    [15] Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan. Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [16] Wang Qi-Guang, Feng Ai-Xia, Gong Zhi-Qiang, Huang Yan. Spatiotemporal analysis of information entropy of the global temperature. Acta Physica Sinica, 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [17] Feng Guo-Lin, Zhang Lu, Zhang Da-Quan. Analysis of precursors and predictability of PDSI extremes in China. Acta Physica Sinica, 2010, 59(8): 5896-5903. doi: 10.7498/aps.59.5896
    [18] Song Qing-Song, Feng Zu-Ren, Li Ren-Hou. Multiple clusters echo state network for chaotic time series prediction. Acta Physica Sinica, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [19] Guo Jin-Li. Impact of edges for new nodes on scale-free networks. Acta Physica Sinica, 2008, 57(2): 756-761. doi: 10.7498/aps.57.756
    [20] Wang Qi-Guang, Zhi Rong, Zhang Zeng-Ping. The research on long range correlation of Lorenz system. Acta Physica Sinica, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
Metrics
  • Abstract views:  10502
  • PDF Downloads:  328
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2019
  • Accepted Date:  27 February 2020
  • Published Online:  20 April 2020

/

返回文章
返回