搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代误差补偿的混沌时间序列最小二乘支持向量机预测算法

唐舟进 任峰 彭涛 王文博

引用本文:
Citation:

基于迭代误差补偿的混沌时间序列最小二乘支持向量机预测算法

唐舟进, 任峰, 彭涛, 王文博

A least square support vector machine prediction algorithm for chaotic time series based on the iterative error correction

Tang Zhou-Jin, Ren Feng, Peng Tao, Wang Wen-Bo
PDF
导出引用
  • 本文分析了传统支持向量机预测算法产生的误差特性,发现产生的预测误差不同于噪声,具有较强的规律性,单一的预测模型遗漏了许多混沌序列中的确定性分量. 经过误差补偿后,残差的冗余信息减少,随机性增强. 在此基础上,本文提出一种基于迭代误差补偿的最小二乘支持向量机预测算法,能够通过多模型联合预测更加有效地逼近混沌系统的映射函数,在预测精度上取得了大幅度的提升. 此外,算法通过留一交叉验证法的方法能够在预测前自动优化模型参数组合,克服了现有算法无法仅利用先验信息优化预测模型参数的缺陷. 对MackeyGlass和Lorenz混沌时间序列进行了仿真实验,实验结果优于相关文献记载方法的预测性能,在性能指标上好于现有算法一个数量级.
    This paper analyzes the error characteristic of traditional support vector machine prediction algorithm, where the error series are smooth and regular. This is because a single prediction model is incapable of fitting chaotic system mapping function and omitting some deterministic component. On this basis, a prediction algorithm that consists of an iterative error correction and a least square support vector machine (LSSVM) is proposed. The algorithm creats multiple predictive models via the method of iterative error correction to approximate the chaotic system mapping function and obtain significant improvements of predictive performance. In addition, the optimal parameters of the prediction model are automatically obtained from the pattern search algorithm which is simple and effective. Experiment conducted on Lorenz time series and MackeyGlass time series indicates that the proposed algorithm has a much better performance than that recorded in the literature.
    • 基金项目: 中国国防科技预研项目(批准号:208010201)资助的课题.
    • Funds: Project supported by the Chinese Defence Advanced Research Program of Science and Technology, China(Grant No. 208010201).
    [1]

    Chen D Y, Liu Y, Ma X Y 2012 Acta Phys. Sin. 61 100501 (in Chinese) [陈帝伊, 柳烨, 马孝义 2012 物理学报 61 100501]

    [2]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [3]

    Song T, Li H 2012 Acta Phys. Sin. 61 080506 (in Chinese) [宋彤, 李菡 2012 物理学报 61 080506]

    [4]

    Lei Z, Fengchun T, Shouqiong L, Lijun D, Xiongwei P, Xin Y 2013 Sensors and Actuators B: Chemical 182 71

    [5]

    Rohitash C, Mengjie Z 2012 Neurocomputing 86 116

    [6]

    Cheng-Jian L, Cheng-Hung C, Chin-Teng L 2009 IEEE Trans. Sys. Tem. Man Cyber. 39 55

    [7]

    Ma Q L, Zheng Q L, Peng H, Tan J W 2009 Acta Phys. Sin. 58 1410 (in Chinese) [马千里, 郑启伦, 彭宏, 覃姜维 2009 物理学报 58 1410]

    [8]

    Zhang C T, Ma Q L, Peng H 2010 Acta Phys. Sin. 59 7623 (in Chinese) [张春涛, 马千里, 彭宏 2010 物理学报 59 7623]

    [9]

    Shi Z W, Han M 2007 IEEE Trans. Neural Netw. 18 359

    [10]

    Chatzis S P, Demiris Y 2011 IEEE Trans. Neural Netw. 22 1435

    [11]

    Zhang W Z, Long W, Jiao J J 2012 Acta Phys. Sin. 61 220506 (in Chinese) [张文专, 龙文, 焦建军 2012 物理学报 61 220506]

    [12]

    Zhang J F, Hu S S 2008 Acta Phys. Sin. 57 2708 (in Chinese) [张军峰, 胡寿松 2008 物理学报 57 2708]

    [13]

    Arash M, Majid A 2013 IEEE Trans. Neural Netw. 24 207

    [14]

    Yu Y H, Song J D 2012 Acta Phys. Sin. 61 170516 (in Chinese) [于艳华, 宋俊德 2012 物理学报 61 170516]

    [15]

    Vapnik V N, 1999 The Nature of Statistical Learning Theory (2nd Ed.) (New York, Springer) pp183-190

    [16]

    Sapankevych N I, Sankar R 2009 IEEE Comput. Intell. Mag. 4 24

    [17]

    Cai C Z, Fei J F, Wen Y F, Zhu X J, Xiao T T 2009 Acta Phys. Sin. 58 S008 (in Chinese) [蔡从中, 裴军芳, 温玉锋, 朱星键, 肖婷婷 2009 物理学报 58S008]

    [18]

    Ligang Z, Kin K L, Lean Y 2009 Soft Comput. 13 149

    [19]

    Chen M H, Ceckbum B, Reitich F 2005 J. Sci. Comput. 22 205

    [20]

    Mirmomeni M, Lucas C, Araabi B N, Moshiri B, Bidar M R 2011 IET Signal Process. 5 515

  • [1]

    Chen D Y, Liu Y, Ma X Y 2012 Acta Phys. Sin. 61 100501 (in Chinese) [陈帝伊, 柳烨, 马孝义 2012 物理学报 61 100501]

    [2]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [3]

    Song T, Li H 2012 Acta Phys. Sin. 61 080506 (in Chinese) [宋彤, 李菡 2012 物理学报 61 080506]

    [4]

    Lei Z, Fengchun T, Shouqiong L, Lijun D, Xiongwei P, Xin Y 2013 Sensors and Actuators B: Chemical 182 71

    [5]

    Rohitash C, Mengjie Z 2012 Neurocomputing 86 116

    [6]

    Cheng-Jian L, Cheng-Hung C, Chin-Teng L 2009 IEEE Trans. Sys. Tem. Man Cyber. 39 55

    [7]

    Ma Q L, Zheng Q L, Peng H, Tan J W 2009 Acta Phys. Sin. 58 1410 (in Chinese) [马千里, 郑启伦, 彭宏, 覃姜维 2009 物理学报 58 1410]

    [8]

    Zhang C T, Ma Q L, Peng H 2010 Acta Phys. Sin. 59 7623 (in Chinese) [张春涛, 马千里, 彭宏 2010 物理学报 59 7623]

    [9]

    Shi Z W, Han M 2007 IEEE Trans. Neural Netw. 18 359

    [10]

    Chatzis S P, Demiris Y 2011 IEEE Trans. Neural Netw. 22 1435

    [11]

    Zhang W Z, Long W, Jiao J J 2012 Acta Phys. Sin. 61 220506 (in Chinese) [张文专, 龙文, 焦建军 2012 物理学报 61 220506]

    [12]

    Zhang J F, Hu S S 2008 Acta Phys. Sin. 57 2708 (in Chinese) [张军峰, 胡寿松 2008 物理学报 57 2708]

    [13]

    Arash M, Majid A 2013 IEEE Trans. Neural Netw. 24 207

    [14]

    Yu Y H, Song J D 2012 Acta Phys. Sin. 61 170516 (in Chinese) [于艳华, 宋俊德 2012 物理学报 61 170516]

    [15]

    Vapnik V N, 1999 The Nature of Statistical Learning Theory (2nd Ed.) (New York, Springer) pp183-190

    [16]

    Sapankevych N I, Sankar R 2009 IEEE Comput. Intell. Mag. 4 24

    [17]

    Cai C Z, Fei J F, Wen Y F, Zhu X J, Xiao T T 2009 Acta Phys. Sin. 58 S008 (in Chinese) [蔡从中, 裴军芳, 温玉锋, 朱星键, 肖婷婷 2009 物理学报 58S008]

    [18]

    Ligang Z, Kin K L, Lean Y 2009 Soft Comput. 13 149

    [19]

    Chen M H, Ceckbum B, Reitich F 2005 J. Sci. Comput. 22 205

    [20]

    Mirmomeni M, Lucas C, Araabi B N, Moshiri B, Bidar M R 2011 IET Signal Process. 5 515

计量
  • 文章访问数:  2301
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-24
  • 修回日期:  2013-11-26
  • 刊出日期:  2014-03-05

基于迭代误差补偿的混沌时间序列最小二乘支持向量机预测算法

  • 1. 北京邮电大学信息与通信工程学院, 北京 100876
    基金项目: 

    中国国防科技预研项目(批准号:208010201)资助的课题.

摘要: 本文分析了传统支持向量机预测算法产生的误差特性,发现产生的预测误差不同于噪声,具有较强的规律性,单一的预测模型遗漏了许多混沌序列中的确定性分量. 经过误差补偿后,残差的冗余信息减少,随机性增强. 在此基础上,本文提出一种基于迭代误差补偿的最小二乘支持向量机预测算法,能够通过多模型联合预测更加有效地逼近混沌系统的映射函数,在预测精度上取得了大幅度的提升. 此外,算法通过留一交叉验证法的方法能够在预测前自动优化模型参数组合,克服了现有算法无法仅利用先验信息优化预测模型参数的缺陷. 对MackeyGlass和Lorenz混沌时间序列进行了仿真实验,实验结果优于相关文献记载方法的预测性能,在性能指标上好于现有算法一个数量级.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回