Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Node importance based on the weighted K-order propagation number algorithm

Huang Li-Ya Tang Ping-Chuan Huo You-Liang Zheng Yi Cheng Xie-Feng

Citation:

Node importance based on the weighted K-order propagation number algorithm

Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng
PDF
HTML
Get Citation
  • The measurement of node importance is significant for analyzing a network structure. To comprehensively reflect the global and local network features, in this paper we abstract the propagating process of epidemic diseases based on the network topology structure, and then respectively sets each node as an infection source. After a certain dissemination time K, the number of infected nodes in the network is defined as the K-order propagation number, and the weighted sum of K-order propagation numbers under different values of K is taken as the important index of nodes. The simulation experiments of Watts-Strogatz small-world networks and a dolphin network show that the weighted K-order propagation number algorithm is more effective than the traditional method in evaluating the importance of nodes. For the Watts-Strogatz small-world networks, it can reflect the influence of long-distance connections on information transmission in detail. For the dolphin network, the weighted K-order propagation number algorithm significantly raises the profile of those nodes which play a key role in the information communication between different dolphin communities. In addition, in this paper we use a deliberate attacking method to analyze the western power grid of the United States, the road transportation network of the Chicago region, the co-authorship network in network science and the axonal tracts’ network between neurons of mouse. According to the specific order of the node importance from high to low, network nodes are attacked in turn, that is, all edges of the attacked nodes are removed. The analysis results of network parameters such as the network efficiency and the node number of the maximum sub-graph changing with the attacking times show that comparing with other evaluation indices of node importance such as degree, Ren method, Chen method, eigenvector method, Katz index, PageRank, CI method and K-shell, the weighted K-order propagation number algorithm focuses much on destroying the major structure, and all of the above four networks will break down if only a small number of important nodes are attacked. For example, after attacking only 100 nodes, the network efficiency of the western power grid of the United States is down by 90%, and after attacking 200 nodes, the network scale of the maximum sub-graph is nearly 3% of the original network.
      Corresponding author: Huang Li-Ya, huangly@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 71671093, 61271334).
    [1]

    周漩, 张凤鸣, 周卫平, 邹伟, 杨帆 2012 物理学报 61 190201Google Scholar

    Zhou X, Zhang F M, Zhou W P, Zhou W, Yang F 2012 Acta Phys. Sin. 61 190201Google Scholar

    [2]

    周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31Google Scholar

    Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31Google Scholar

    [3]

    Liu J G, Wang Z T, Dang Y Z 2005 Mod. Phys. Lett. B 19 785Google Scholar

    [4]

    汪小帆, 李翔, 陈关荣 2006 复杂网络理论及其应用 (北京: 清华大学出版社) 第8页

    Wang X F, Li X, Chen G R 2006 Complex Network Theory and Application (Beijing: Tsinghua University Press) p8 (in Chinese)

    [5]

    Dunne J A, Williams R J, Martinez N D 2002 Ecol. Lett. 5 558Google Scholar

    [6]

    Samant K, Bhattacharyya S 2004 Proceedings of the 37th Annual Hawaii International Conference on System Sciences Washington, USA, January 5–8, 2004 p289

    [7]

    Newman M E J, Forrest S, Balthrop A 2002 Phys. Rev. E 66 035101

    [8]

    Jeong H, Mason S, Barabasi A L 2001 Nature 411 41Google Scholar

    [9]

    任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901Google Scholar

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901Google Scholar

    [10]

    Chen D B, Lü L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777Google Scholar

    [11]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [12]

    Sabidussi G 1966 Psyehometrika 31 581Google Scholar

    [13]

    Bavelas A 1950 J. Acoustical Soc. Amer. 22 725Google Scholar

    [14]

    Stephenson K, Zelen M 1989 Soc. Netw. 1 11

    [15]

    Borgatti S P 2005 Soc. Netw. 27 55Google Scholar

    [16]

    Katz L 1953 Psychometrika 18 39Google Scholar

    [17]

    Zhang J, Xu X K, Li P, Zhang K, Small M 2011 Chaos 21 016107Google Scholar

    [18]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [19]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031Google Scholar

    [20]

    Bryan K, Leise T 2006 SIAM Rev. 48 569Google Scholar

    [21]

    Lü L Y, Zhang Y C, Yeung C H, Zhou T 2011 PLoS One 6 e 2120 2

    [22]

    Zhong L F, Liu Q H, Wang W, Cai S M 2018 Physica A 511 78Google Scholar

    [23]

    Allen L J S 1994 Math. Biosci. 124 83Google Scholar

    [24]

    黄丽亚, 霍宥良, 王青, 成谢锋 2019 物理学报 68 018901Google Scholar

    Huang L Y, Huo Y L, Wang Q, Cheng X F 2019 Acta Phys. Sin. 68 018901Google Scholar

    [25]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [26]

    Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [27]

    Lusseau D, Newman M E J 2004 Proc. Biol. Sci. 271 477Google Scholar

    [28]

    Eash R W, Chon K S, Lee Y J, Boyce D E 1983 Transport. Res. Rec. 994 30

    [29]

    Newman M E J 2006 Phys. Rev. E 74 036104Google Scholar

    [30]

    Ryan A R, Nesreen K A 2015 Proceedings of the Twenty-Ninth AAAI Conference on Artificial Austin, Texas, January 25–30, 2015 p4292

    [31]

    李鹏翔, 任玉晴, 席酉民 2004 系统工程 22 13Google Scholar

    Li P X, Ren Y Q, Xi Y M 2004 Syst. Eng. 22 13Google Scholar

    [32]

    赫南, 李德毅, 淦文燕, 朱熙 2007 计算机科学 34 1Google Scholar

    He N, Li D Y, Gan W Y, Zhu X 2007 Comput. Sci. 34 1Google Scholar

    [33]

    赵志远, 孟相如, 孙瑞男 2018 计算机工程 44 62Google Scholar

    Zhao Z Y, Meng X R, Sun R N 2018 Comput. Eng. 44 62Google Scholar

  • 图 1  随机生成的100节点WS小世界网络 (a) 网络结构; (b) 边31-33被改连至边31-72; (c) 边95-96被改连至边95-53

    Figure 1.  A random WS small-world network with 100 nodes: (a) Network structure; (b) the edge 31-33 is rescheduled to the edge 31-72; (c) the edge 95-96 is rescheduled to the edge 95-53.

    图 2  基于加权K-阶传播数法的WS小世界网络节点重要性结果 (a) K-阶结构熵; (b) 权重系数; (c) 节点重要性

    Figure 2.  Node importance of the WS small-world network based on the weighted K-order propagation number algorithm: (a) The K-order structure entropy; (b) the weight coefficient; (c) the importance of nodes.

    图 3  基于若干传统算法的WS小世界网络节点重要性评价结果 (a) 度中心性; (b) Ren法; (c) Chen法; (d) 介数中心性; (e) 特征向量法; (f) Katz指标法; (g) PageRank算法; (h) CI法

    Figure 3.  Node importance of the WS small-world network based on some traditional algorithms: (a) Degree centrality; (b) Ren method; (c) Chen method; (d) betweenness centrality; (e) eigenvector method; (f) Katz index; (g) PageRank; (h) CI method.

    图 4  基于加权K-阶传播数法的海豚网络节点重要性结果 (a) K-阶结构熵; (b) 权重系数; (c) 节点重要性

    Figure 4.  Node importance of the dolphin network based on the weighted K-order propagation number algorithm: (a) The K-order structure entropy; (b) the weight coefficient; (c) the importance of nodes.

    图 5  K-阶结构熵 (a) 美国西部电网; (b) 芝加哥公路网络; (c) 科学家合作网络; (d) 小鼠神经纤维束网络

    Figure 5.  The K-order structure entropy: (a) The western power grid of the United States; (b) the road transportation network of the Chicago region; (c) the co-authorship network in network science; (d) the axonal tracts network between neurons of mouse.

    图 6  网络效率下降率ε随攻击次数的变化情况 (a) 美国西部电网; (b) 芝加哥公路网络; (c) 网络科学家合著网络; (d) 小鼠神经纤维束网络

    Figure 6.  Change of the network efficiency decrease rate ε with attacking times: (a) The western power grid of the United States; (b) the road transportation network of the Chicago region; (c) the co-authorship network in network science; (d) the axonal tracts network between neurons of mouse.

    图 7  最大子图节点数γ随攻击次数的变化情况 (a) 美国西部电网; (b) 芝加哥公路网络; (c) 网络科学家合著网络; (d) 小鼠神经纤维束网络

    Figure 7.  Change of the node number of the maximum sub-graph ε with attacking times: (a) The western power grid of the United States; (b) the road transportation network of the Chicago region; (c) the co-authorship network in network science; (d) the axonal tracts network between neurons of mouse.

    表 1  WS小世界网络以及同规模随机网络的网络参数

    Table 1.  Network features of the WS small-world network and random networks.

    网络类型节点数边数平均聚类
    系数
    特征路径
    长度
    WS小世界网络1002000.4868.4891
    随机网络1002000.02543.4158
    DownLoad: CSV

    表 2  海豚网节点重要性排序结果

    Table 2.  Node importance ordering result of the dolphin network.

    节点重要性加权K-阶传播数法Ren法Chen法介数中心性法特征向量法Katz指标法PageRank算法CI法
    11515153715151515
    2383838238381838
    34646464146465246
    42134343834345834
    5415151851523841
    63441411830304630
    73721172152413452
    83030225517213021
    95252195241511451
    10514430582239219
    11239214019192139
    123919252939173917
    131937393025221022
    144422524444444144
    15918441521255525
    DownLoad: CSV
  • [1]

    周漩, 张凤鸣, 周卫平, 邹伟, 杨帆 2012 物理学报 61 190201Google Scholar

    Zhou X, Zhang F M, Zhou W P, Zhou W, Yang F 2012 Acta Phys. Sin. 61 190201Google Scholar

    [2]

    周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31Google Scholar

    Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31Google Scholar

    [3]

    Liu J G, Wang Z T, Dang Y Z 2005 Mod. Phys. Lett. B 19 785Google Scholar

    [4]

    汪小帆, 李翔, 陈关荣 2006 复杂网络理论及其应用 (北京: 清华大学出版社) 第8页

    Wang X F, Li X, Chen G R 2006 Complex Network Theory and Application (Beijing: Tsinghua University Press) p8 (in Chinese)

    [5]

    Dunne J A, Williams R J, Martinez N D 2002 Ecol. Lett. 5 558Google Scholar

    [6]

    Samant K, Bhattacharyya S 2004 Proceedings of the 37th Annual Hawaii International Conference on System Sciences Washington, USA, January 5–8, 2004 p289

    [7]

    Newman M E J, Forrest S, Balthrop A 2002 Phys. Rev. E 66 035101

    [8]

    Jeong H, Mason S, Barabasi A L 2001 Nature 411 41Google Scholar

    [9]

    任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901Google Scholar

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901Google Scholar

    [10]

    Chen D B, Lü L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777Google Scholar

    [11]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [12]

    Sabidussi G 1966 Psyehometrika 31 581Google Scholar

    [13]

    Bavelas A 1950 J. Acoustical Soc. Amer. 22 725Google Scholar

    [14]

    Stephenson K, Zelen M 1989 Soc. Netw. 1 11

    [15]

    Borgatti S P 2005 Soc. Netw. 27 55Google Scholar

    [16]

    Katz L 1953 Psychometrika 18 39Google Scholar

    [17]

    Zhang J, Xu X K, Li P, Zhang K, Small M 2011 Chaos 21 016107Google Scholar

    [18]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [19]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031Google Scholar

    [20]

    Bryan K, Leise T 2006 SIAM Rev. 48 569Google Scholar

    [21]

    Lü L Y, Zhang Y C, Yeung C H, Zhou T 2011 PLoS One 6 e 2120 2

    [22]

    Zhong L F, Liu Q H, Wang W, Cai S M 2018 Physica A 511 78Google Scholar

    [23]

    Allen L J S 1994 Math. Biosci. 124 83Google Scholar

    [24]

    黄丽亚, 霍宥良, 王青, 成谢锋 2019 物理学报 68 018901Google Scholar

    Huang L Y, Huo Y L, Wang Q, Cheng X F 2019 Acta Phys. Sin. 68 018901Google Scholar

    [25]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [26]

    Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [27]

    Lusseau D, Newman M E J 2004 Proc. Biol. Sci. 271 477Google Scholar

    [28]

    Eash R W, Chon K S, Lee Y J, Boyce D E 1983 Transport. Res. Rec. 994 30

    [29]

    Newman M E J 2006 Phys. Rev. E 74 036104Google Scholar

    [30]

    Ryan A R, Nesreen K A 2015 Proceedings of the Twenty-Ninth AAAI Conference on Artificial Austin, Texas, January 25–30, 2015 p4292

    [31]

    李鹏翔, 任玉晴, 席酉民 2004 系统工程 22 13Google Scholar

    Li P X, Ren Y Q, Xi Y M 2004 Syst. Eng. 22 13Google Scholar

    [32]

    赫南, 李德毅, 淦文燕, 朱熙 2007 计算机科学 34 1Google Scholar

    He N, Li D Y, Gan W Y, Zhu X 2007 Comput. Sci. 34 1Google Scholar

    [33]

    赵志远, 孟相如, 孙瑞男 2018 计算机工程 44 62Google Scholar

    Zhao Z Y, Meng X R, Sun R N 2018 Comput. Eng. 44 62Google Scholar

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Wang Bo-Ya, Yang Xiao-Chun, Lu Sheng-Rong, Tang Yong-Ping, Hong Shu-Quan, Jiang Hui-Yuan. A multidimensional node importance evaluation method based on graph convolutional networks. Acta Physica Sinica, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [3] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [4] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [5] Yang Song-Qing, Jiang Yuan, Tong Tian-Chi, Yan Yu-Wei, Gan Ge-Sheng. A method of evaluating importance of nodes in complex network based on Tsallis entropy. Acta Physica Sinica, 2021, 70(21): 216401. doi: 10.7498/aps.70.20210979
    [6] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [7] Su Zhen, Gao Chao, Li Xiang-Hua. Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [8] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [9] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [10] Han Zhong-Ming, Chen Yan, Li Meng-Qi, Liu Wen, Yang Wei-Jie. An efficient node influence metric based on triangle in complex networks. Acta Physica Sinica, 2016, 65(16): 168901. doi: 10.7498/aps.65.168901
    [11] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [12] Hu Qing-Cheng, Yin Yan-Shen, Ma Peng-Fei, Gao Yang, Zhang Yong, Xing Chun-Xiao. A new approach to identify influential spreaders in complex networks. Acta Physica Sinica, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [13] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [14] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, Guo Qiang. Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Physica Sinica, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [15] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [16] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [17] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [18] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [19] Xiong Fei, Liu Yun, Si Xia-Meng, Ding Fei. Network model with synchronously increasing nodes and edges based on Web 2.0. Acta Physica Sinica, 2010, 59(10): 6889-6895. doi: 10.7498/aps.59.6889
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  8724
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2019
  • Accepted Date:  05 April 2019
  • Available Online:  01 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回