Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Majority-vote model with collective influence of hierarchical structures

Chen Yi-Duo Yun Yu-Ting Guan Jian-Yue Wu Zhi-Xi

Citation:

Majority-vote model with collective influence of hierarchical structures

Chen Yi-Duo, Yun Yu-Ting, Guan Jian-Yue, Wu Zhi-Xi
PDF
HTML
Get Citation
  • Majority-vote model is a commonly used model in the study of opinion dynamics. In the original majority-vote model, the influence of node is determined by their neighbors. But there are nodes with low degree surrounded by nodes with high degree so they also have a great influence on the evolution of opinions. Therefore, the influence of a node should not only be measured by neighbors but also be connected to itself directly. Thus, this paper adds collective influence with hierarchical structures into the majority-vote model and measures opinion weight of center node by degree of their neighbors on hierarchical structures surround it with the set distance. The collective influence parameters used in this paper are related to the value of collective influence mentioned above and normalized by the maximum value of all nodes in system. The opinions’ evolution of majority-vote model with collective influence is studied in ER random networks and scale-free networks with different degree distribution exponents by Monte Carlo simulations. It is found that all systems have order-to-disorder phase transitions with the increase of noise parameter. When the depth of hierarchical structure is not zero, the system with collective influence is much easier to turn to disordered states so their critical noise parameters of phase transition are smaller than those of 0-depth systems and original majority-vote model. The reason is that high degree nodes in original majority-vote model have high influence because they are connected to more neighbors and nodes’ influence is also directly determined by degree in 0-depth collective influence model. Furthermore, nodes’ collective influence parameters in the system will all decrease when hierarchical structure of nonzero depth is considered, only a small number of individuals have high influence parameters in the system and they will make the opinions of surrounding individuals follow theirs, so if the opinions of a few highly influential individuals are out of order, then the system will reach a state of disorder. Because of the above factors, the collective influence model of nonzero depth is much easier to disorder with the increase of noise parameter. Besides, the system proves to be easier to reach a disordered state with the increase of degree distribution exponents in scale-free networks because all nodes’ degree will be lower so that the system will be dominated by less nodes with high degree. This conclusion verifies that scale-free networks are more similar to ER random networks with the increase of degree distribution exponents. Finally, through the finite-size scaling method, it is found that the phase transition of the majority-vote model with collective influence of hierarchical structures belongs in the Ising model universal class, whether in ER random networks or in scale-free networks.
      Corresponding author: Guan Jian-Yue, guanjy@lzu.edu.cn ; Wu Zhi-Xi, wuzhx@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975111, 12047501, 12247101).
    [1]

    Calvelli M, Crokidakis N, Penna T J P 2019 Physica A 513 518Google Scholar

    [2]

    Pires M A, Crokidakis N 2022 Phil. Trans. R. Soc. A. 380 20210164Google Scholar

    [3]

    Khalil N, Galla T 2021 Phys. Rev. E 103 012311Google Scholar

    [4]

    Liu J Z, Huang S D, Aden N M, Johnson N F, Song C M 2023 Phys. Rev. Lett. 130 037401Google Scholar

    [5]

    Costa L S A, de Souza A J F 2005 Phys. Rev. E 71 056124Google Scholar

    [6]

    Lima F W S, Fulco U L, Costa Filho R N 2005 Phys. Rev. E 71 036105Google Scholar

    [7]

    de Oliveira M J 1992 J. Stat. Phys. 66 273Google Scholar

    [8]

    Mendes J F F, Santos M A 1998 Phys. Rev. E 57 108Google Scholar

    [9]

    de Silva Hilho A G, Moreira F G B 2002 J. Stat. Phys. 106 391Google Scholar

    [10]

    Campos P R A, de Oliveira V M, Brady Moreira F G 2003 Phys. Rev. E 67 026104Google Scholar

    [11]

    Pereira L F C, Moreira F G B 2005 Phys. Rev. E 71 016123Google Scholar

    [12]

    Kwak W, Yang J S, Sohn J I, et al. 2007 Phys. Rev. E 75 061110Google Scholar

    [13]

    de Oliveira M J, Mendes J F F, Santos M A 1993 J. Phys. A 26 2317Google Scholar

    [14]

    Marques M C 1993 J. Phys. A 26 1559Google Scholar

    [15]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [16]

    Lloyd A L, May R M 2001 Science 292 1316Google Scholar

    [17]

    Wang S J, Wu Z X, Dong H R, Chen G R 2010 Int. J. Mod. Phys. C 21 67Google Scholar

    [18]

    Morone F, Makse H A 2015 Nature 524 65Google Scholar

    [19]

    Binder K 1981 Physica B 43 119Google Scholar

    [20]

    普利施克 M, 贝格森 B著(汤雷翰, 童培庆译)2020 平衡态统计物理学(北京: 北京大学出版社)第174—177页

    Plischke M, Bergersen B (translated by Tang L H, Tong P Q) 2020 Equilibrium Statistical Physics (Beijing: Peking University Press) pp174–177

    [21]

    Molloy M, Reed B 1995 Random Struct. Algorithms 6 161Google Scholar

    [22]

    Molloy M, Reed B 1998 Comb. Probab. Comput. 7 295Google Scholar

    [23]

    Lima F W S 2006 Int. J. Mod. Phys. C 17 1257Google Scholar

    [24]

    Kim M, Yook S H 2021 Phys. Rev. E 103 022302Google Scholar

  • 图 1  (a), (b)分别表示在 ER 随机网络中磁化强度$ M(q, N) $、四阶宾德累积矩$ U(q, N) $随噪声参数$ q $的变化曲线, 网络平均度$ \left\langle{k}\right\rangle=10 $, 节点数$ N=10000 $

    Figure 1.  (a), (b) The variation curves of magnetization $ M(q, N) $ and Binder’s fourth-order cumulant $ U(q, N) $ with noise parameter $ q $ in ER random network, respectively. The average degree of networks is $ \left\langle{k}\right\rangle=10 $, and the number of nodes is $ N=10000 $.

    图 2  (a), (b)在 ER 网络中, 当$ l=0 $和$ l=1 $时四阶宾德累积矩$ U(q, N) $随噪声参数$ q $的变化曲线. 网络平均度$ \left\langle{k}\right\rangle=10 $

    Figure 2.  (a), (b) $ l=0 $ and $ l=1 $ of the Binder’s fourth-order cumulant $ U(q, N) $ with noise parameter $ q $ in the ER network, respectively. The average degree of networks is $ \left\langle{k}\right\rangle=10 $.

    图 3  (a), (b)分别为ER随机网络中$ {\omega }_{i} $分布情况与不同度$ {k}_{i} $的$ {\omega }_{i} $平均值大小统计情况

    Figure 3.  (a) The distribution of $ {\omega }_{i} $ and (b) the statistics of the average value of $ {\omega }_{i} $ of different degrees $ {k}_{i} $ in ER random network.

    图 4  (a), (b) 分别为ER网络在$ l=0 $时磁化强度$ M(q, N) $与磁化率$ \chi (q, N) $的有限尺寸标度图; (c), (d)分别为ER网络在$ l=1 $时磁化强度$ M(q, N) $与磁化率$ \chi (q, N) $的有限尺寸标度图

    Figure 4.  (a), (b) The finite size scaling graphs of the magnetization $ M(q, N) $ and the susceptibility $ \chi (q, N) $ of the ER network at $ l=0 $, respectively; (c), (d) the finite size scaling graphs of the magnetization $ M(q, N) $ and the susceptibility $ \chi (q, N) $ of the ER network at $ l= 1 $, respectively.

    图 5  (a), (b) $ \lambda =2.5 $; (c), (d) $ \lambda =3 $; (e), (f) $ \lambda =4 $无标度网络中磁化强度$ M(q, N) $、四阶宾德累积矩$ U(q, N) $随噪声参数$ q $的变化曲线. 网络平均度$ \left\langle{k}\right\rangle=10 $, 节点数$ N=10000 $

    Figure 5.  The variation curves of magnetization $ M(q, N) $ and Binder’s fourth-order cumulant $ U(q, N) $ with noise parameter $ q $ in scale-free networks with (a), (b) $ \lambda =2.5 $; (c), (d) $ \lambda =3 $; (e), (f) $ \lambda =4 $, respectively. The average degree of networks is $ \left\langle{k}\right\rangle=10 $, and the number of nodes is $ N=10000 $.

    图 6  (a), (b) $ \lambda =2.5 $; (c), (d) $ \lambda =3 $; (e), (f) $ \lambda =4 $无标度网络中$ l=0 $和$ l=1 $时四阶宾德累积矩$ U(q, N) $随噪声参数$ q $的变化曲线. 网络平均度$ \left\langle{k}\right\rangle=10 $

    Figure 6.  The variation curves of the Binder’s fourth-order cumulant $ U(q, N) $ with the noise parameter q when $ l=0 $ and $ l=1 $ in a scale-free network with (a), (b) $ \lambda =2.5 $; (c), (d) $ \lambda =3 $; (e), (f) $ \lambda =4 $, respectively. The average degree of networks is $ \left\langle{k}\right\rangle=10 $.

    图 7  $ \lambda =2.5 $时无标度网络磁化强度$ M(q, N) $和磁化率$ \chi (q, N) $的有限尺寸标度图 (a), (b) $ l=0 $; (c), (d) $ l=1 $

    Figure 7.  The finite-size scaling graphs of magnetization $ M(q, N) $ and susceptibility $ \chi (q, N) $ of scale-free networks with $ \lambda =2.5 $: (a), (b) $ l=0 $; (c), (d) $ l=1 $.

    图 8  $ l=0 $和$ l=1 $的具有集体影响力的多数投票模型中, 无标度网络不同度分布指数$ \lambda $对应的相变临界点$ {q}_{{\mathrm{c}}} $

    Figure 8.  In the majority-vote model with collective influence of $ l=0 $ and $ l=1 $, the phase transition critical point $ {q}_{{\mathrm{c}}} $ with different degree distribution index $ \lambda $ of the scale-free network.

    图 9  $ N=10000 $, $ \lambda =2.5 $的无标度网络中 (a) $ {\omega }_{i} $的分布情况; (b)不同度$ {k}_{i} $的$ {\omega }_{i} $平均值统计情况

    Figure 9.  In scale-free network when $ N=10000 $ and $ \lambda =2.5 $: (a) Distribution of $ {\omega }_{i} $ in scale-free networks; (b) the statistics of the average value of $ {\omega }_{i} $ of different degrees $ {k}_{i} $ .

    图 10  $ {\omega }_{i} $的分布情况图, $ \lambda =2.5 $的无标度网络在$ l=0 $和$ l=1 $时的分布情况与$ \lambda =4 $的无标度网络在$ l=0 $和$ l=1 $时的分布情况

    Figure 10.  Distribution of $ {\omega }_{i} $, $ l=0 $, $ l=1 $ of scale-free networks with $ \lambda =2.5 $ and $ \lambda =4 $.

    图 11  相变临界点处的磁化强度值. 横坐标为系统尺寸大小

    Figure 11.  The magnetization $ M(q, N) $ value at the critical point of phase transition. The abscissa is the size of the system.

    表 1  $ {\omega }_{i} $均值和方差

    Table 1.  Mean and variance of $ {\omega }_{i} $.

    $ l=0 $$ l=1 $$ l=2 $$ l=3 $
    $ \left\langle{{\omega }_{i}}\right\rangle $$ 0.41\left(6\right) $$ 0.18\left(5\right) $$ 0.18\left(3\right) $$ 0.19\left(3\right) $
    $ \sigma \left({\omega }_{i}\right) $$ 0.017\left(4\right) $$ 0.014\left(9\right) $$ 0.014\left(5\right) $$ 0.014\left(9\right) $
    DownLoad: CSV

    表 2  不同网络对应的$ {q}_{{\mathrm{c}}0} $, $ {q}_{{\mathrm{c}}1} $以及$ |{q}_{{\mathrm{c}}0}-{q}_{{\mathrm{c}}1}| $

    Table 2.  $ {q}_{{\mathrm{c}}0} $, $ {q}_{{\mathrm{c}}1} $ and $ |{q}_{{\mathrm{c}}0}-{q}_{{\mathrm{c}}1}| $ of different networks.

    ER网络$ \lambda =2.5 $$ \lambda =2.7 $$ \lambda =3 $$ \lambda =3.5 $$ \lambda =4 $
    $ {q}_{{\mathrm{c}}0} $0.3010.30350.30150.30.2970.295
    $ {q}_{{\mathrm{c}}1} $0.2830.2920.28950.28750.28350.2805
    $ |{q}_{{\mathrm{c}}0}-{q}_{{\mathrm{c}}1}| $0.0180.01150.0120.01250.01350.0145
    DownLoad: CSV

    表 3  $ {\omega }_{i} $均值和方差

    Table 3.  Mean and variance of $ {\omega }_{i} $.

    $ l=0 $$ l=1 $$ l=2 $$ l=3 $
    $ \left\langle{{\omega }_{i}}\right\rangle $0.66(2)0.37(6)0.36(9)0.38(1)
    $ \sigma \left({\omega }_{i}\right) $0.22(4)0.035(2)0.033(8)0.033(8)
    DownLoad: CSV

    表 4  $ {\omega }_{i} $均值和方差

    Table 4.  Mean and variance of $ {\omega }_{i} $.

    $ l=0 $$ l=1 $$ l=2 $$ l=3 $
    $ \left\langle{{\omega }_{i}}\right\rangle $$ \lambda =2.5 $0.66(2)0.37(6)0.36(9)0.38(1)
    $ \lambda =4 $0.61(7)0.33(6)0.33(7)0.34(6)
    $ \sigma \left({\omega }_{i}\right) $$ \lambda =2.5 $0.022(5)0.035(2)0.033(8)0.033(8)
    $ \lambda =4 $0.017(4)0.027(4)0.027(5)0.027(4)
    DownLoad: CSV

    表 5  临界指数实验结果与引用数据对照

    Table 5.  Results of critical exponents and reference data for comparison.

    $ l=0 $ ER网络 $ \lambda =2.5 $ $ \lambda =3 $ $ \lambda =4 $
    $ 1/\bar{\nu } $0.49(6)0.45(5)0.46(1)0.48(5)
    $ \beta /\bar{\nu } $0.23(5)0.23(1)0.23(5)0.23(5)
    $ \gamma /\bar{\nu } $0.49(5)0.49(2)0.49(2)0.49(5)
    $ l=1 $ER网络$ \lambda =2.5 $$ \lambda =3 $$ \lambda =4 $
    $ 1/\bar{\nu } $0.47(5)0.44(6)0.46(5)0.47(5)
    $ \beta /\bar{\nu } $0.23(6)0.22(1)0.23(1)0.23(5)
    $ \gamma /\bar{\nu } $0.50(5)0.51(5)0.51(5)0.51(2)
    原始多数投票模型ER网络$ \lambda < 3 ~ (\lambda =2.7) $$ 3 < \lambda < 5 ~ (\lambda =3.7) $$ \lambda > 5~ (\lambda =5.2) $
    $ 1/\bar{\nu } $$ 0.5 $$ 0.31 $$ 0.48 $$ 0.47 $
    $ \beta /\bar{\nu } $$ 0.25 $$ 0.25 $$ 0.25 $$ 0.21 $
    $ \gamma /\bar{\nu } $$ 0.5 $$ 0.51 $$ 0.49 $$ 0.57 $
    DownLoad: CSV
  • [1]

    Calvelli M, Crokidakis N, Penna T J P 2019 Physica A 513 518Google Scholar

    [2]

    Pires M A, Crokidakis N 2022 Phil. Trans. R. Soc. A. 380 20210164Google Scholar

    [3]

    Khalil N, Galla T 2021 Phys. Rev. E 103 012311Google Scholar

    [4]

    Liu J Z, Huang S D, Aden N M, Johnson N F, Song C M 2023 Phys. Rev. Lett. 130 037401Google Scholar

    [5]

    Costa L S A, de Souza A J F 2005 Phys. Rev. E 71 056124Google Scholar

    [6]

    Lima F W S, Fulco U L, Costa Filho R N 2005 Phys. Rev. E 71 036105Google Scholar

    [7]

    de Oliveira M J 1992 J. Stat. Phys. 66 273Google Scholar

    [8]

    Mendes J F F, Santos M A 1998 Phys. Rev. E 57 108Google Scholar

    [9]

    de Silva Hilho A G, Moreira F G B 2002 J. Stat. Phys. 106 391Google Scholar

    [10]

    Campos P R A, de Oliveira V M, Brady Moreira F G 2003 Phys. Rev. E 67 026104Google Scholar

    [11]

    Pereira L F C, Moreira F G B 2005 Phys. Rev. E 71 016123Google Scholar

    [12]

    Kwak W, Yang J S, Sohn J I, et al. 2007 Phys. Rev. E 75 061110Google Scholar

    [13]

    de Oliveira M J, Mendes J F F, Santos M A 1993 J. Phys. A 26 2317Google Scholar

    [14]

    Marques M C 1993 J. Phys. A 26 1559Google Scholar

    [15]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [16]

    Lloyd A L, May R M 2001 Science 292 1316Google Scholar

    [17]

    Wang S J, Wu Z X, Dong H R, Chen G R 2010 Int. J. Mod. Phys. C 21 67Google Scholar

    [18]

    Morone F, Makse H A 2015 Nature 524 65Google Scholar

    [19]

    Binder K 1981 Physica B 43 119Google Scholar

    [20]

    普利施克 M, 贝格森 B著(汤雷翰, 童培庆译)2020 平衡态统计物理学(北京: 北京大学出版社)第174—177页

    Plischke M, Bergersen B (translated by Tang L H, Tong P Q) 2020 Equilibrium Statistical Physics (Beijing: Peking University Press) pp174–177

    [21]

    Molloy M, Reed B 1995 Random Struct. Algorithms 6 161Google Scholar

    [22]

    Molloy M, Reed B 1998 Comb. Probab. Comput. 7 295Google Scholar

    [23]

    Lima F W S 2006 Int. J. Mod. Phys. C 17 1257Google Scholar

    [24]

    Kim M, Yook S H 2021 Phys. Rev. E 103 022302Google Scholar

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [3] Su Zhen, Gao Chao, Li Xiang-Hua. Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [4] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [5] Han Zhong-Ming, Chen Yan, Li Meng-Qi, Liu Wen, Yang Wei-Jie. An efficient node influence metric based on triangle in complex networks. Acta Physica Sinica, 2016, 65(16): 168901. doi: 10.7498/aps.65.168901
    [6] Su Xiao-Ping, Song Yu-Rong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks. Acta Physica Sinica, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [7] Min Lei, Liu Zhi, Tang Xiang-Yang, Chen Mao, Liu San-Ya. Evaluating influential spreaders in complex networks by extension of degree. Acta Physica Sinica, 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [8] Hu Qing-Cheng, Zhang Yong, Xu Xin-Hui, Xing Chun-Xiao, Chen Chi, Chen Xin-Hua. A new approach for influence maximization in complex networks. Acta Physica Sinica, 2015, 64(19): 190101. doi: 10.7498/aps.64.190101
    [9] Yuan Ming. A cascading failure model of complex network with hierarchy structure. Acta Physica Sinica, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [10] Wang Ya-Qi, Wang Jing, Yang Hai-Bin. An evolution model of microblog user relationship networks based on complex network theory. Acta Physica Sinica, 2014, 63(20): 208902. doi: 10.7498/aps.63.208902
    [11] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [12] Li Yan, Tang Gang, Song Li-Jiang, Xun Zhi-Peng, Xia Hui, Hao Da-Peng. Numerical simulations of the phase transition property of the explosive percolation model on Erds Rnyi random network. Acta Physica Sinica, 2013, 62(4): 046401. doi: 10.7498/aps.62.046401
    [13] Li Ze-Quan, Zhang Rui-Xin, Yang Zhao, Zhao Hong-Ze, Yu Jian-Hao. Influence complex network centrality on disaster spreading. Acta Physica Sinica, 2012, 61(23): 238902. doi: 10.7498/aps.61.238902
    [14] Liang Xiao-Lin, Gong Yue-Qiu, Liu Zhi-Zhuang, Lü Ye-Gang, Zheng Xue-Jun. Effect of external electric field on phase transitions of ferroelectric thin films. Acta Physica Sinica, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [15] Xing Chang-Ming, Liu Fang-Ai. Research on the deterministic complex network model based on the Sierpinski network. Acta Physica Sinica, 2010, 59(3): 1608-1614. doi: 10.7498/aps.59.1608
    [16] Wang Jian-Wei, Rong Li-Li. Cascading failures on complex networks based on the local preferential redistribution rule of the load. Acta Physica Sinica, 2009, 58(6): 3714-3721. doi: 10.7498/aps.58.3714
    [17] Ouyang Min, Fei Qi, Yu Ming-Hui. Estimation and improvement of disaster spreading models based on complex network. Acta Physica Sinica, 2008, 57(11): 6763-6770. doi: 10.7498/aps.57.6763
    [18] Ma Wei-Dong, Wang Lei, Li You-Ping, Shui Hong-Shou, Zhou Ming-Tian. Influence of user requirement behaviors on internet collective dynamics. Acta Physica Sinica, 2008, 57(3): 1381-1388. doi: 10.7498/aps.57.1381
    [19] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
    [20] YUAN JIAN, REN YONG, LIU FENG, SHAN XIU-MING. PHASE TRANSITION AND COLLECTIVE CORRELATION BEHAVIOR IN THE COMPLEX COMPUTER NETWORK. Acta Physica Sinica, 2001, 50(7): 1221-1225. doi: 10.7498/aps.50.1221
Metrics
  • Abstract views:  2388
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2023
  • Accepted Date:  05 October 2023
  • Available Online:  12 October 2023
  • Published Online:  20 January 2024

/

返回文章
返回