Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface structure design of boron nitride nanotubes and mechanism of their regulation on properties of epoxy composite dielectric

Ren Jun-Wen Jiang Guo-Qing Chen Zhi-Jie Wei Hua-Chao Zhao Li-Hua Jia Shen-Li

Citation:

Surface structure design of boron nitride nanotubes and mechanism of their regulation on properties of epoxy composite dielectric

Ren Jun-Wen, Jiang Guo-Qing, Chen Zhi-Jie, Wei Hua-Chao, Zhao Li-Hua, Jia Shen-Li
PDF
HTML
Get Citation
  • Adding nanofillers into epoxy resin matrices is a common method to achieve their multi-function. Boron nitride nanotubes (BNNTs) with one-dimensional nanostructures have attracted much attention because of their ultra-high thermal conductivity, wide energy level band gap, high aspect ratio and mechanical strength. Yet, the strong π-π non-covalent bonding and lip-lip interactions make BNNTs prone to agglomeration in the epoxy resin matrix. Moreover, the different physicochemical properties of BNNTs and epoxy resins as well as the chemical inertness of BNNTs surface lead to the lack of effective interfacial interaction between BNNTs and epoxy resin matrix. Therefore, the performance of the epoxy composite dielectric is not enhanced by simple blending solely, but will even have the opposite effect. To address the problems of BNNTs, in this study, the surface structure of BNNTs is constructed from the perspective of interface modulation by using sol-gel method to coat mesoporous silica (mSiO2) on BNNTs’ surface and further introducing silane coupling agent (KH560). The results indicate that the surface structure of BNNTs can optimize the level of interfacial interaction between BNNTs and epoxy resin matrix, which leads to stronger interfacial connection and elimination of internal pore phenomenon. The dielectric constant and loss of the composite dielectric prepared in this way are further reduced, reaching 4.1 and 0.005 respectively at power frequency, which is significantly lower than that of pure epoxy resin. At the same time, the mechanical toughness (3.01 MJ/m3) and thermal conductivity (0.34 W/(m⋅K)) are greatly improved compared with the counterparts of pure epoxy resin. In addition, the unique nano-mesoporous structure of mSiO2 endows the composite dielectric with a large number of deep traps, which effectively hinders the migration of electrons, thereby improving the electrical strength of the composite dielectric, and the breakdown field strength reaches 95.42 kV/mm. Furthermore, the interfacial mechanism of BNNTs’ surface structure on dielectric relaxation and trap distribution of composite dielectrics is systematically studied by Tanaka multinuclear model. The above results indicate that the good interfacial interaction between BNNTs and epoxy resin matrix is crucial in establishing the micro-interface structure and improving the macroscopic properties of composite dielectrics. This study presents a novel idea for the multifunctionalities of epoxy resin, and also provides some experimental data support for revealing the correlation among surface properties of nano-fillers, microstructure and macroscopic properties of composite dielectric.
      Corresponding author: Jia Shen-Li, jiashenli@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52107020), the Key R&D Projects in Sichuan Province, China (Grant No. 2023YFG0236), the State Key Laboratory of Electrical Insulation of Power Equipment Open Fund, China (Grant No. EIPE23210), and the China Postdoctoral Science Foundation (Grant No. 2018M643475).
    [1]

    张志斌, 任明, 宋波, 陈荣发, 余家赫, 范文杰, 董明 2022 中国电机工程学报 42 1690Google Scholar

    Zhang Z B, Ren M, Song B, Chen R F, Yu J H, Fan W J, Dong M 2022 Proc. CSEE 42 1690Google Scholar

    [2]

    周远翔, 刘轩昊, 朱小倩, 卢毅, 高岩峰 2023 高电压技术 49 2891Google Scholar

    Zhou Y X, Liu X H, Zhu X Q, Lu Y, Gao Y F 2023 High Volt. Eng. 49 2891Google Scholar

    [3]

    Yuan S J, Peng Z Q, Rong M Z, Zhang M Q 2022 Mater. Chem. Front. 6 1137Google Scholar

    [4]

    Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62Google Scholar

    [5]

    Bertasius P, Shneider M, Macutkevic J, Samulionis V, Banys J, Zak A 2019 J. Nanomater Pt. 4 5761439Google Scholar

    [6]

    Golberg D, Bando Y, Tang C, Zhi C 2007 Adv. Mater. 19 2413Google Scholar

    [7]

    Pan Z, Tao Y, Zhao Y, Fitzgerald M L, McBride J R, Zhu L, Li D 2021 Nano Lett. 21 7317Google Scholar

    [8]

    Zhang S, Chen W J, Zhao Y, Yang K, Du B, Ding L J, Yang W, Wu S Z 2021 Compos. B. Eng. 223 109106Google Scholar

    [9]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2013 Adv. Funct. Mater. 23 1824Google Scholar

    [10]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739Google Scholar

    [11]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914Google Scholar

    [12]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [13]

    韩延东, 韩明勇, 杨文胜 2021 高等学校化学学报 42 965Google Scholar

    Han Y D, Han M Y, Yang W S 2021 Chem. Res. Chin. Univ. 42 965Google Scholar

    [14]

    杨国清, 戚相成, 高青青, 王德意 2022 高电压技术 48 689Google Scholar

    Yang G Q, Qi X C, Gao Q Q, Wang D Y 2022 High Volt. Eng. 48 689Google Scholar

    [15]

    Amin M S, Molin T E, Tampubolon C, Kranbuehl D E, Schniepp H C 2020 Chem. Mater. 32 9090Google Scholar

    [16]

    Li B, Zeng H C 2018 ACS Appl. Mater. Interfaces 10 29435Google Scholar

    [17]

    李鹏新, 崔浩喆, 邢照亮, 郭宁, 闵道敏 2022 电工技术学报 37 291Google Scholar

    Li P X, Cui H Z, Xing Z L, Guo N, Min D M 2022 Trans. CES. 37 291Google Scholar

    [18]

    查俊伟, 黄文杰, 杨兴, 万宝全, 郑明胜 2023 高电压技术 49 1055Google Scholar

    Zha J W, Huang W J, Yang X, Wan B Q, Zheng M S 2023 High Volt. Eng. 49 1055Google Scholar

    [19]

    Zhao L H, Yan L, Wei C M, Li Q H, Huang X L, Wang Z L, Fu M L, Ren J W 2020 J. Phys. Chem. C 124 12723Google Scholar

    [20]

    Feng Z Q, Liu X H, Zhang W C, Zeng J J, Liu J M, Chen B F, Lin J M, Tan L Q, Liang L Y 2022 J. Mater. Sci. 57 1156Google Scholar

    [21]

    高铭泽, 张沛红 2016 物理学报 65 247802Google Scholar

    Gao M Z, Zhang P H 2016 Acta Phys. Sin. 65 247802Google Scholar

    [22]

    邹阳, 林锦煌, 何津, 翁祖辰, 金涛 2023 电工技术学报 38 622Google Scholar

    Zhou Y, Lin J H, He J, Wen Z C, Jin T 2023 Trans. CES. 38 622Google Scholar

    [23]

    张涛, 江世杰, 张宁, 任乔林, 肖洒 2022 高电压技术 48 1452Google Scholar

    Zhang T, Jiang S J, Zhang N, Ren Q L, Xiao S 2022 High Volt. Eng. 48 1452Google Scholar

    [24]

    Heileman K, Daoud J, Tabrizian M 2013 Biosens. Bioelectron. 49C 348Google Scholar

    [25]

    Achour M E, Brosseau C, Carmona F 2008 J. Appl. Phys. 103 1277Google Scholar

    [26]

    成鹏飞, 王辉, 李盛涛 2013 物理学报 62 057701Google Scholar

    Cheng P F, Wang H, Li S T 2013 Acta Phys. Sin. 62 057701Google Scholar

    [27]

    Ibragimov T D, Ramazanova I S, Yusifova U V, Rzayev R M 2023 Integr. Ferroelectr. 231 1Google Scholar

    [28]

    肖异瑶, 周求宽, 宴年平, 王子悦, 武康宁, 李欢, 李建英 2017 绝缘材料 50 36Google Scholar

    Xiao Y Y, Zhou Q K, Yan N P, Wang Z Y, Wu K N, Li H, Li J Y 2017 Insul. Mater. 50 36Google Scholar

    [29]

    Siddabattuni S, Schuman T P, Dogan F 2011 Mater. Sci. Eng. B 176 1422Google Scholar

    [30]

    张镱议, 李杭东, 郑明胜, 查俊伟, 陈松, 祝晚华, 青双桂 2022 高电压技术 48 4264Google Scholar

    Zhang Y Y, Li H D, Zheng M S, Zha J W, Chen S, Zhu W H, Qing S G 2022 High Volt. Eng. 48 4264Google Scholar

    [31]

    Tu Y P, Zhou F W, Cheng Y, Jiang H, Wang C, Bai F J, Lin J 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1275Google Scholar

    [32]

    Tian F Q, Zhang L, Zhang J L, Peng X 2017 Compos. B. Eng. 114 93Google Scholar

    [33]

    Chen Y, Cheng Y H, Wu K, Nelson J K, Dissado L A, Li S G 2009 IEEE Trans. Plasma. Sci. 37 195Google Scholar

    [34]

    Yang K, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Zhang S, Fu Y F 2021 ACS Appl. Mater. Interfaces 13 25850Google Scholar

    [35]

    查俊伟, 肖梦雨, 万宝全, 郑明胜 2023 绝缘材料 56 1Google Scholar

    Zha J W, Xiao M Y, Wan B Q, Zheng M S 2023 Insul. Mater. 56 1Google Scholar

    [36]

    Zhang X D, Zhang Z T, Wang H Z, Cao B Y 2023 ACS Appl. Mater. Interfaces 15 3534Google Scholar

    [37]

    Tang D M, Ren C L, Wei X L, Wang M S, Liu C, Bando Y, Golberg D 2011 ACS Nano 5 7362Google Scholar

    [38]

    Zeng X, Sun J, Yao Y, Sun R, Xu J B, Wong C P 2017 ACS Nano 11 5167Google Scholar

    [39]

    Chang H B, Lu M X, Arias-Monje P J, Luo J, Park C, Kumar S 2019 ACS Appl. Nano Mater. 2 6670Google Scholar

    [40]

    查俊伟, 王帆 2022 物理学报 71 233601Google Scholar

    Zha J W, Wang F 2022 Acta Phys. Sin. 71 233601Google Scholar

  • 图 1  Tanaka多核模型示意图

    Figure 1.  Schematic diagram of Tanaka multicore model.

    图 2  BNNTs@mSiO2-KH560纳米颗粒的制备及表征 (a) BNNTs@mSiO2-KH560纳米颗粒的制备流程; (b)—(d) BNNTs@mSiO2-KH560的TEM图像; (e) BNNTs与BNNTs@mSiO2-KH560在5°—90°的XRD图谱; (f)—(h) BNNTs与BNNTs@mSiO2-KH560的XPS图谱; (i) BNNTs与BNNTs@mSiO2-KH560的FT-IR图谱

    Figure 2.  Preparation and characterization of BNNTs@mSiO2-KH560 nanoparticles: (a) Preparation process of BNNTs@mSiO2-KH560 nanoparticles; (b)–(d) TEM images of BNNTs@mSiO2-KH560; (e) XRD patterns of BNNTs and BNNTs@mSiO2-KH560 at 5°–90°; (f)–(h) XPS patterns of BNNTs and BNNTs@mSiO2-KH560; (i) FT-IR patterns of BNNTs and BNNTs@mSiO2-KH560.

    图 3  (a)—(d) 不同BNNTs含量的复合电介质SEM图像; (e)—(h)不同BNNTs@mSiO2-KH560含量的复合电介质SEM图像

    Figure 3.  (a)–(d) SEM images of composite dielectric with different BNNTs contents; (e)–(h) SEM images of composite dielectric with different BNNTs@mSiO2-KH560 contents.

    图 4  复合电介质的介电性能 (a) 不同BNNTs含量的复合电介质介电常数、介质损耗因数频谱图; (b) 不同BNNTs@mSiO2-KH560含量的复合电介质介电常数、介质损耗因数频谱图

    Figure 4.  Dielectric properties of composite dielectric: (a) Dielectric constant, dielectric loss spectrum of composite dielectric with different BNNTs contents; (b) dielectric constant, dielectric loss spectrum of composite dielectric with different BNNTs@mSiO2-KH560 contents.

    图 5  (a)—(c) 不同填料复合电介质的Cole-Cole图; (d)—(f) 不同填料复合电介质介电常数两项式Cole-Cole方程拟合图

    Figure 5.  (a)–(c) Cole-Cole diagram of composite dielectric with different fillers; (d)–(f) two-term Cole-Cole equation fit diagram of dielectric constant of composite dielectric with different fillers.

    图 6  不同填料复合电介质的介质损耗因数温谱图

    Figure 6.  Temperature spectrum of dielectric loss factor of composite dielectric with different fillers.

    图 7  复合电介质电击穿性能和去极化热刺激电流曲线 (a) 不同填料含量的复合电介质电击穿测试威布尔概率分布图; (b) 复合电介质电击穿通道示意图; (c) 复合电介质良好界面结合阻碍放电发展示意图; (d) 不同填料复合电介质全温谱去极化热刺激电流曲线; (e) 不同填料复合电介质β峰去极化热刺激电流曲线

    Figure 7.  Electrical breakdown performance and depolarization heat stimulation current curves of composite dielectrics: (a) Weibull probability distribution diagram for electrical breakdown test of composite dielectric with different filler contents; (b) schematic diagram of composite dielectric electrical breakdown channel; (c) schematic diagram of composite dielectric possessing excellent interface combination hinders the intention of discharge emitting; (d) depolarization heat stimulation current curves with full temperature spectrum of composite dielectrics with different fillers; (e) β peak depolarization heat stimulation current curves of composite dielectrics with different fillers.

    图 8  不同填料复合电介质的韧性与导热性能 (a) 不同填料复合电介质的应力-应变曲线; (b) 不同填料复合电介质的杨氏模量; (c), (d) 不同填料复合电介质的导热系数及其增长率

    Figure 8.  Toughness and thermal conductivity of composite dielectric with different fillers: (a) Stress-strain curve of composite dielectric with different fillers; (b) Young’s modulus of composite dielectric with different fillers; (c), (d) thermal conductivity and its corresponding growth rate of composite dielectric with different fillers.

    表 1  两项式Cole-Cole方程拟合参数表

    Table 1.  Table of parameters for fitting the two-term Cole-Cole equation.

    复合电介质温度/℃$ {\omega _1} $/Hz$ {\gamma _1} $$ {\omega _2} $/Hz$ {\gamma _2} $$ {\varepsilon _\infty } $$ {\varepsilon _{\text{s}}} $
    Epoxy1500.320.7980000.603.5022.0
    1400.30.916000.603.7510.0
    1300.340.99500.453.67.0
    BNNTs1500.50.980000.604.6022.0
    1400.50.9550000.604.6016.5
    1300.380.9715000.504.4510.0
    BNNTs@mSiO2-KH5601500.250.980000.604.9028.0
    1400.130.8510000.454.5024.0
    1300.050.652600.454.3015.0
    DownLoad: CSV

    表 2  复合电介质的标准击穿场强和形状参数

    Table 2.  Standard breakdown field strength and shape parameters of composite dielectric.

    复合电介质 标准击穿场强/
    (kV·mm–1)
    形状参数
    Epoxy 26.02 4.31
    BNNTs-0.5 20.92 4.30
    BNNTs-3 36.04 22.89
    BNNTs@mSiO2-KH560-0.5 29.69 6.25
    BNNTs@mSiO2-KH560-1 42.90 7.35
    BNNTs@mSiO2-KH560-2 69.50 6.73
    BNNTs@mSiO2-KH560-3 95.42 6.67
    DownLoad: CSV

    表 3  复合电介质的陷阱深度及密度

    Table 3.  Trap depth and density of composite dielectric.

    复合电介质$ \alpha $ 陷阱$ \beta $ 陷阱$ Q $/pC
    $ E $/eV$ {Q_\alpha } $/pC$ E $/eV$ {Q_\beta } $/pC
    Epoxy0.14134134
    BNNTs0.079494
    BNNTs@mSiO2-KH5600.206520.820.32652.32
    DownLoad: CSV

    表 4  复合电介质的韧性

    Table 4.  Toughness of composite dielectric.

    复合电介质韧性/(MJ·m–3)
    Epoxy1.01
    BNNTs-0.51.02
    BNNTs-11.04
    BNNTs-21.37
    BNNTs-31.83
    BNNTs@mSiO2-KH560-0.51.78
    BNNTs@mSiO2-KH560-12.21
    BNNTs@mSiO2-KH560-22.61
    BNNTs@mSiO2-KH560-33.01
    DownLoad: CSV
  • [1]

    张志斌, 任明, 宋波, 陈荣发, 余家赫, 范文杰, 董明 2022 中国电机工程学报 42 1690Google Scholar

    Zhang Z B, Ren M, Song B, Chen R F, Yu J H, Fan W J, Dong M 2022 Proc. CSEE 42 1690Google Scholar

    [2]

    周远翔, 刘轩昊, 朱小倩, 卢毅, 高岩峰 2023 高电压技术 49 2891Google Scholar

    Zhou Y X, Liu X H, Zhu X Q, Lu Y, Gao Y F 2023 High Volt. Eng. 49 2891Google Scholar

    [3]

    Yuan S J, Peng Z Q, Rong M Z, Zhang M Q 2022 Mater. Chem. Front. 6 1137Google Scholar

    [4]

    Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62Google Scholar

    [5]

    Bertasius P, Shneider M, Macutkevic J, Samulionis V, Banys J, Zak A 2019 J. Nanomater Pt. 4 5761439Google Scholar

    [6]

    Golberg D, Bando Y, Tang C, Zhi C 2007 Adv. Mater. 19 2413Google Scholar

    [7]

    Pan Z, Tao Y, Zhao Y, Fitzgerald M L, McBride J R, Zhu L, Li D 2021 Nano Lett. 21 7317Google Scholar

    [8]

    Zhang S, Chen W J, Zhao Y, Yang K, Du B, Ding L J, Yang W, Wu S Z 2021 Compos. B. Eng. 223 109106Google Scholar

    [9]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2013 Adv. Funct. Mater. 23 1824Google Scholar

    [10]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739Google Scholar

    [11]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914Google Scholar

    [12]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [13]

    韩延东, 韩明勇, 杨文胜 2021 高等学校化学学报 42 965Google Scholar

    Han Y D, Han M Y, Yang W S 2021 Chem. Res. Chin. Univ. 42 965Google Scholar

    [14]

    杨国清, 戚相成, 高青青, 王德意 2022 高电压技术 48 689Google Scholar

    Yang G Q, Qi X C, Gao Q Q, Wang D Y 2022 High Volt. Eng. 48 689Google Scholar

    [15]

    Amin M S, Molin T E, Tampubolon C, Kranbuehl D E, Schniepp H C 2020 Chem. Mater. 32 9090Google Scholar

    [16]

    Li B, Zeng H C 2018 ACS Appl. Mater. Interfaces 10 29435Google Scholar

    [17]

    李鹏新, 崔浩喆, 邢照亮, 郭宁, 闵道敏 2022 电工技术学报 37 291Google Scholar

    Li P X, Cui H Z, Xing Z L, Guo N, Min D M 2022 Trans. CES. 37 291Google Scholar

    [18]

    查俊伟, 黄文杰, 杨兴, 万宝全, 郑明胜 2023 高电压技术 49 1055Google Scholar

    Zha J W, Huang W J, Yang X, Wan B Q, Zheng M S 2023 High Volt. Eng. 49 1055Google Scholar

    [19]

    Zhao L H, Yan L, Wei C M, Li Q H, Huang X L, Wang Z L, Fu M L, Ren J W 2020 J. Phys. Chem. C 124 12723Google Scholar

    [20]

    Feng Z Q, Liu X H, Zhang W C, Zeng J J, Liu J M, Chen B F, Lin J M, Tan L Q, Liang L Y 2022 J. Mater. Sci. 57 1156Google Scholar

    [21]

    高铭泽, 张沛红 2016 物理学报 65 247802Google Scholar

    Gao M Z, Zhang P H 2016 Acta Phys. Sin. 65 247802Google Scholar

    [22]

    邹阳, 林锦煌, 何津, 翁祖辰, 金涛 2023 电工技术学报 38 622Google Scholar

    Zhou Y, Lin J H, He J, Wen Z C, Jin T 2023 Trans. CES. 38 622Google Scholar

    [23]

    张涛, 江世杰, 张宁, 任乔林, 肖洒 2022 高电压技术 48 1452Google Scholar

    Zhang T, Jiang S J, Zhang N, Ren Q L, Xiao S 2022 High Volt. Eng. 48 1452Google Scholar

    [24]

    Heileman K, Daoud J, Tabrizian M 2013 Biosens. Bioelectron. 49C 348Google Scholar

    [25]

    Achour M E, Brosseau C, Carmona F 2008 J. Appl. Phys. 103 1277Google Scholar

    [26]

    成鹏飞, 王辉, 李盛涛 2013 物理学报 62 057701Google Scholar

    Cheng P F, Wang H, Li S T 2013 Acta Phys. Sin. 62 057701Google Scholar

    [27]

    Ibragimov T D, Ramazanova I S, Yusifova U V, Rzayev R M 2023 Integr. Ferroelectr. 231 1Google Scholar

    [28]

    肖异瑶, 周求宽, 宴年平, 王子悦, 武康宁, 李欢, 李建英 2017 绝缘材料 50 36Google Scholar

    Xiao Y Y, Zhou Q K, Yan N P, Wang Z Y, Wu K N, Li H, Li J Y 2017 Insul. Mater. 50 36Google Scholar

    [29]

    Siddabattuni S, Schuman T P, Dogan F 2011 Mater. Sci. Eng. B 176 1422Google Scholar

    [30]

    张镱议, 李杭东, 郑明胜, 查俊伟, 陈松, 祝晚华, 青双桂 2022 高电压技术 48 4264Google Scholar

    Zhang Y Y, Li H D, Zheng M S, Zha J W, Chen S, Zhu W H, Qing S G 2022 High Volt. Eng. 48 4264Google Scholar

    [31]

    Tu Y P, Zhou F W, Cheng Y, Jiang H, Wang C, Bai F J, Lin J 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1275Google Scholar

    [32]

    Tian F Q, Zhang L, Zhang J L, Peng X 2017 Compos. B. Eng. 114 93Google Scholar

    [33]

    Chen Y, Cheng Y H, Wu K, Nelson J K, Dissado L A, Li S G 2009 IEEE Trans. Plasma. Sci. 37 195Google Scholar

    [34]

    Yang K, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Zhang S, Fu Y F 2021 ACS Appl. Mater. Interfaces 13 25850Google Scholar

    [35]

    查俊伟, 肖梦雨, 万宝全, 郑明胜 2023 绝缘材料 56 1Google Scholar

    Zha J W, Xiao M Y, Wan B Q, Zheng M S 2023 Insul. Mater. 56 1Google Scholar

    [36]

    Zhang X D, Zhang Z T, Wang H Z, Cao B Y 2023 ACS Appl. Mater. Interfaces 15 3534Google Scholar

    [37]

    Tang D M, Ren C L, Wei X L, Wang M S, Liu C, Bando Y, Golberg D 2011 ACS Nano 5 7362Google Scholar

    [38]

    Zeng X, Sun J, Yao Y, Sun R, Xu J B, Wong C P 2017 ACS Nano 11 5167Google Scholar

    [39]

    Chang H B, Lu M X, Arias-Monje P J, Luo J, Park C, Kumar S 2019 ACS Appl. Nano Mater. 2 6670Google Scholar

    [40]

    查俊伟, 王帆 2022 物理学报 71 233601Google Scholar

    Zha J W, Wang F 2022 Acta Phys. Sin. 71 233601Google Scholar

  • [1] Yin Kai, Guo Qi-Yang, Zhang Tian-Yin, Li Jing, Chen Xiang-Rong. Improving insulation properties of epoxy filled with surface fluorinated polystyrene nanospheres. Acta Physica Sinica, 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [2] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [4] Zhu Mao-Cong, Shao Ya-Jie, Zhou Jing, Chen Wen, Wang Zhi-Qing, Tian Jing. Resistive properties of CuInS2 quantum dots regulated by niobium-doped lead zirconate titanate ferroelectric films. Acta Physica Sinica, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [5] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [6] Zeng Qiang,  Zhang Chen-Li. Buckling behavior of boron nitride nanotubes under combined axial compression and torsion via molecular dynamics simulations. Acta Physica Sinica, 2018, 67(24): 246101. doi: 10.7498/aps.67.20180641
    [7] Lin Sheng-Jun, Huang Yin, Xie Dong-Ri, Min Dao-Min, Wang Wei-Wang, Yang Liu-Qing, Li Sheng-Tao. Molecular relaxation and glass transition properties of epoxy resin at high temperature. Acta Physica Sinica, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [8] Ru Jia-Sheng, Min Dao-Min, Zhang Chong, Li Sheng-Tao, Xing Zhao-Liang, Li Guo-Chang. Research on surface potential decay characteristics of epoxy resin charged by direct current corona. Acta Physica Sinica, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [9] Feng Qi, Li Meng-Kai, Tang Hai-Tong, Wang Xiao-Dong, Gao Zhong-Min, Meng Fan-Ling. Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films. Acta Physica Sinica, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [10] Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng. Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic. Acta Physica Sinica, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [11] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [12] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [13] Zhou Jing, Liu Cun-Jin, Li Ru, Chen Wen. Effects of heterogeneous interfaces on microstructure and dielectric properties of Ca(Mg1/3Nb2/3)O3/CaTiO3 multilayered thin films. Acta Physica Sinica, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [14] Chen Chao, Jiang Xiang-Ping, Wei Wei, Li Xiao-Hong, Wei Hong-Bin, Song Fu-Sheng. Micro-morphology and dielectric properties for (K0.45Na0.55)NbO3 lead-free piezoelectric crystal. Acta Physica Sinica, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [15] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [16] Zeng Tao, Dong Xian-Lin, Mao Chao-Liang, Liang Rui-Hong, Yang Hong. Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism. Acta Physica Sinica, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [17] He Kai-Hua, Zheng Guang, Lü Tao, Chen Gang, Ji Guang-Fu. Effect of high pressures on structural, electronic and optical properties of BN nanotube. Acta Physica Sinica, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [18] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [19] Ma Jian-Hua, Sun Jing-Lan, Meng Xiang-Jian, Lin Tie, Shi Fu-Wen, Chu Jun-Hao. Dielectric and interface characteristics of SrTiO3 with a MIS structure. Acta Physica Sinica, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [20] ZHAO XIAO-PENG, FAN JI-JUN, GAO XIU-MIN, CAO CHANG-NIAN. THE ADJUSTABLE CHARACTER OF MICROWAVE TRANSMITTANCE IN ER FLUID. Acta Physica Sinica, 2001, 50(7): 1302-1307. doi: 10.7498/aps.50.1302
Metrics
  • Abstract views:  2625
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2023
  • Accepted Date:  18 July 2023
  • Available Online:  11 January 2024
  • Published Online:  20 January 2024

/

返回文章
返回