-
The ongoing trend toward high-power and miniaturized electronic devices has raised increasingly stringent requirements for the high-temperature electrical properties of epoxy encapsulating materials. In this study, epoxy-terminated phenyltrisiloxane (ETS) is used as a functional monomer to incorporate Si-O bonds into bisphenol-A epoxy resin through crosslinking reactions, thereby systematically investigating the influence and modulation effects of ETS on the structure and high-temperature electrical characteristics of epoxy composites. Gel content measurements indicate that as the concentration of ETS increases, the gel content of the epoxy resin composite decreases accordingly, suggesting that higher ETS content reduces the crosslinking density of the epoxy network. Experimental test results demonstrate that compared with pure epoxy resin, the composite with 2.5% ETS exhibits superior performance: the glass transition temperature increases to 129 ℃ with thermal decomposition temperature rising, while showing optimal high-temperature (70 ℃) electrical properties including significantly reduced conductivity, markedly suppressed space charge accumulation, deepened trap energy level (from 0.834 eV to 0.847 eV), reduced dielectric loss (0.005 at 50 Hz), and improved breakdown strength (74.2 kV/mm). Notably, as the ETS content increases, the electrical properties of epoxy composite follow a non-monotonic concentration dependence, initially enhancing then deteriorating, exhibiting evolutionary characteristics similar to those of nanoparticle-modified systems. Herein, a competitive mechanism between the epoxy network structure and intrinsic properties of ETS is proposed to explain this phenomenon: at low concentrations, the original C—C network dominates, where the intrinsic properties of ETS are constrained by the host matrix, leading to improved thermal stability. Simultaneously, the bandgap difference between ETS and DGEBA establishes charge barriers that can enhance insulation performance. However, at higher concentrations, the reduced crosslinking density and increased free volume caused by reactivity and structural mismatch between ETS and DGEBA ultimately lead to performance degradation. This study offers crucial theoretical insights into and produces the design strategies for developing high-performance siloxane-modified epoxy encapsulants.
-
Keywords:
- epoxy resin /
- siloxane /
- crosslinked network /
- high-temperature insulation
-
图 4 (a)—(d) Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的SEM照片; (e), (f) 2.5% Si-EP表面C, O, Si元素分布及含量; (g), (h) 10% Si-EP表面C, O, Si元素分布及含量
Figure 4. (a)–(d) SEM of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples; (e), (f) distribution of C, O and Si elements and content on the surface of 2.5% Si-EP; (g), (h) distribution of C, O and Si elements and content on the surface of 10% Si-EP.
表 1 Pure EP, Si-EP韦布尔概率分布参数
Table 1. Weibull distribution parameters for Pure EP and Si-EP samples.
Pure EP 2.5% Si-EP 5% Si-EP 10% Si-EP β 68.3 74.2 72.6 67.2 σ 14.5 16.1 11.1 12.5 -
[1] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利 2024 物理学报 73 027703
Google Scholar
Ren J W, Jiang G Q, Chen Z J, Wei H C, Zhao L H, Jia S L 2024 Acta Phys. Sin. 73 027703
Google Scholar
[2] Geng H R, Zhao L, Deng J, Chen J R, Fan Y H, Zhao Q Y, Gui H X, Liao J H, Zhao Y F, Qian Y X, Wang G Z 2025 Compos. Sci. Technol. 261 110993
Google Scholar
[3] You Z Y, Weng L, Guan L Z, Zhang X R, Wu Z J, Chen H, Zhao W 2025 High Volt. 10 219
Google Scholar
[4] Jiang C W, Hao C X, Zi C F, Li J, Liu W J, Bian Y M, Sun F Y, Xu Y Q, Yan Y X, Wang L Y, Su F Y, Tian Y Q 2025 Compos. Sci. Technol. 265 111135
Google Scholar
[5] Xia G W, Xie J, Song Y Z, Duan Q J, Zhong Y Y, Xie Q 2025 Compos. Sci. Technol. 261 111019
Google Scholar
[6] Yang X, Huang W J, Dong H, Zha J W 2025 Adv. Mater. 37 2500472
Google Scholar
[7] Maes S, Badi N, Winne J M, Du Prez F E 2025 Nat. Rev. Chem. 9 144
Google Scholar
[8] Yang K R, Dai J Y, Zhao W W, Wang S P, Liu X Q 2024 Compos. part B: Eng. 284 111728
Google Scholar
[9] Zhou Y, LaChance A M, Wang Q, Gao Y F, Zhou J R, Huang B D, Shen K Y, Hou Z L, Lei T, Wang N Z, Zuo Z, Liu S, Dissado L A, Shao T, Liang X D, Cao Y, Sun L Y, Wu C, 2025 J. Mater. Chem. A 13 12926
Google Scholar
[10] Wang Z Y, Sun X, Wang Y, Liu J D, Zhang C, Zhao Z B, Du X Y 2023 Ceram. Int. 49 2871
Google Scholar
[11] 黄家良, 高筱然, 郭亮, 宋思宇, 朱杰, 方志 2025 高电压技术 51 2476
Huang J L, Gao X R, Guo L, Song S Y, Zhu J, Fang Z 2025 High Volt. Eng. 51 2476
[12] 邱甲云, 安秋凤, 史书源, 卢攀 2023 绝缘材料 56 1
Qiu J Y, An Q F, Shi S Y, Lu P 2023 Insul. Mater. 56 1
[13] Liu Y P, Li L, Liu H C, Zhang M J, Liu A J, Liu L, Tang L, Wang G L, Zhou S S 2020 Compos. Sci. Technol. 200 108418
Google Scholar
[14] 贺涛, 刘文凤, 冀运东 2024 热固性树脂 39 1
Google Scholar
He T, Liu W F, Ji Y D 2024 Thermoset. Resin 39 1
Google Scholar
[15] Jin B H, Jang J, Kang D J, Yoon S, Im H G 2022 Compos. Sci. Technol. 224 109456
Google Scholar
[16] Wang C Z, Li S X, Yuan Y, Ji Y D, Cao D F 2024 Polymer 308 127368
Google Scholar
[17] Zhang Y, Shi Y X, Jin C, Wu C, Dong H, Qu Z R, Song Y J 2025 React. Funct. Polym. 207 106114
Google Scholar
[18] Singha S, Thomas M 2008 IEEE Trans. Dielect. Electr. Insul. 15 12
Google Scholar
[19] Ma Y N, Zhao Z H, Zheng Z R, Li J W, Li M H, Hu J 2024 Matter 7 4046
Google Scholar
[20] Gibbs G V, Wallace A F, Cox D F, Downs R T, Ross N L, Rosso K M 2009 Am. Mineral. 94 1085
Google Scholar
[21] Rüchardt C, Beckhaus H 1980 Angew. Chem. Int. Ed. Engl. 19 429
Google Scholar
[22] Sun B Z, Liang H L, Che D Y, Liu H P, Guo S 2019 RSC Adv. 9 9099
Google Scholar
[23] Liu Z Y, Wang H, Chen Y Z, Kang G D, Hua L, Feng J D 2022 Polymers 14 512
Google Scholar
[24] Yu M, Chen Z Y, Li J, Tan J H, Zhu X B 2023 Molecules 28 2826
Google Scholar
[25] Weinhold F, West R 2011 Organometallics 30 5815
Google Scholar
[26] Armstrong D A, Yu D, Rauk A 1996 Can. J. Chem. 74 1192
Google Scholar
[27] Smith K L, Black K M 1984 J. Vac. Sci. Technol. A 2 744
Google Scholar
[28] Berthomieu C, Hienerwadel R 2009 Photosynth. Res. 101 157
Google Scholar
[29] Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W, Breton J 1990 Biochim. Biophys. Acta–Bioenerg. 1016 49
Google Scholar
[30] Yin K, Fan Q H, Li J, Rahman T U, Zhang T Y, Paramane A, Chen X R 2024 High Volt. 9 930
Google Scholar
[31] Kim M T 1997 Thin Solid Films 311 157
Google Scholar
[32] Oh T 2010 Phys. Status Solidi C 7 448
Google Scholar
[33] Cao G, Yan Y, Zou X M, Zhu R S, Ouyang F Y 2018 Spectral Anal. Rev. 06 12
Google Scholar
[34] Turchanin A, Käfer D, El-Desawy M, Wöll C, Witte G, Gölzhäuser A 2009 Langmuir 25 7342
Google Scholar
[35] Dai X Z, Rumi A, Cavallini A, Bak C L, Hao J, Liao R J, Wang H 2024 IEEE Trans. Dielect. Electr. Insul. 31 2290
Google Scholar
[36] Zhu Y W, Jiang Y H, Cao F H, Wang P J, Ke J X, Liu J, Nie Y J, Li G C, Wei Y H, Lu G H, Li S T 2025 J. Mater. Chem. C 13 11697
Google Scholar
[37] Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706
Google Scholar
[38] Wang T Y, Mao J, Zhang B, Zhang G X, Dang Z M 2024 Nat. Rev. Electr. Eng. 1 516
Google Scholar
[39] Wu C, Liang X D, Dissado L A, Chalashkanov N M, Dodd S J, Gao Y F, Xu S 2018 Compos. Sci. Technol. 163 56
Google Scholar
[40] Fu J Y 2014 Philos. Mag. 94 1788
Google Scholar
[41] Wu K N, Sui H R, Ren Y R, Yang K, Zhao P, Ouyang B H, Li H, Zhang X, Ran L, Li J Y 2025 IEEE Trans. Dielect. Electr. Insul. 32 815
Google Scholar
[42] Wang Q L, Chen X R, Li J Y, Paramane A, Huang X F, Ren N 2024 IEEE Trans. Dielect. Electr. Insul. 31 1823
Google Scholar
[43] 高铭泽, 张沛红 2016 物理学报 65 247802
Google Scholar
Gao M Z, Zhang P H 2016 Acta Phys. Sin. 65 247802
Google Scholar
[44] Grabowsky S, Beckmann J, Luger P 2012 Aust. J. Chem. 65 785
Google Scholar
[45] Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62
Google Scholar
Metrics
- Abstract views: 370
- PDF Downloads: 9
- Cited By: 0