Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Aging and life control of cross-linked polyethylene as cable insulation material

Wang Jiang-Qiong Li Wei-Kang Zhang Wen-Ye Wan Bao-Quan Zha Jun-Wei

Citation:

Aging and life control of cross-linked polyethylene as cable insulation material

Wang Jiang-Qiong, Li Wei-Kang, Zhang Wen-Ye, Wan Bao-Quan, Zha Jun-Wei
PDF
HTML
Get Citation
  • Cross-linked polyethylene (XLPE) has been widely used in the field of power cables due to its excellent mechanical properties and insulating properties. However, during the manufacturing of high voltage cables, XLPE will inevitably be affected by electrical aging, thermal aging and electro-thermal combined aging, which makes the resistance and life of the material decline. Therefore, it is necessary to enhance the aging resistance of XLPE without affecting its mechanical properties and insulating properties, so as to extend its service life. In this work, the structural characteristics and cross-linking mechanism of XLPE are introduced, the aging process and influencing mechanism are systematically analyzed, and the life decay problems of XLPE due to aging are explored by using methods such as the temperature Arrhenius equation and the inverse power law of voltage. The improvement strategies such as grafting, blending, and nanoparticle modification can be used to enhance the thermal stability, antioxidant properties, and thermal aging resistance of XLPE, thereby extending its service life. Finally, the strategies of adjusting and controlling the service life of XLPE cable insulation materials in the future are discussed, which provide theoretical guidance for further improving long-term stable operation of XLPE cable insulation materials.
      Corresponding author: Li Wei-Kang, li_weikang@sina.cn ; Zha Jun-Wei, zhajw@ustb.edu.cn
    • Funds: Project supported by the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022A1515240005).
    [1]

    Pourrahimi A M, Kumara S, Palmieri F, Yu L Y, Lund A, Hammarström T, Hagstrand P O, Scheblykin I, Fabiani D, Xu X D, Müller C 2021 Adv. Mater. 33 e2100714Google Scholar

    [2]

    Chen G, Hao M, Xu Z Q, Alun V, Cao J Z, Wang H T 2015 CSEE J. Power Energy Syst. 1 9Google Scholar

    [3]

    张翀, 查俊伟, 王思蛟, 巫运辉, 闫轰达, 李维康, 陈新, 党智敏 2016 绝缘材料 49 1Google Scholar

    Zhang C, Zha J W, Wang S J, Wu Y H, Yan H D, Li W K, Chen X, Dang Z M 2016 Insul. Mater. 49 1Google Scholar

    [4]

    郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)

    Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University Science & Technology

    [5]

    D’Auria S, Pourrahimi A M, Favero A, Neuteboom P, Xu X D, Haraguchi S, Bek M, Kádár R, Dalcanale E, Pinalli R, Müller C, Vachon J 2023 Adv. Funct. Mater. 33 2301878Google Scholar

    [6]

    Wang S J, Zha J W, Wu Y H, Ren L, Dang Z M, Wu J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3350Google Scholar

    [7]

    Wang S J, Zha J W, Li W K, Dang Z M 2016 Appl. Phys. Lett. 108 092902Google Scholar

    [8]

    Wang S J, Zha J W, Li W K, Zhang D L, Dang Z M 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1365Google Scholar

    [9]

    张雅茹, 邵清, 李娟, 袁浩, 李琦, 何金良 2022 石油化工 51 587Google Scholar

    Zhang Y R, Shao Q, Li J, Yuan H, Li Q, He J L 2022 Petrochem. Technol. 51 587Google Scholar

    [10]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [11]

    Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar

    [12]

    Zhang Y Y, Gu G F, Liu J F, Jiang F Y, Fan Y F, Zha J W 2022 Front. Mater. 9 838792Google Scholar

    [13]

    Li H, Li J Y, Li W W, Zhao X T, Wang G L, Alim M A 2013 J. Mater. Sci. : Mater. Electron. 24 1640Google Scholar

    [14]

    Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar

    [15]

    Liang C B, Song P, Gu H B, Ma C, Guo Y Q, Zhang H Y, Xu X J, Zhang Q Y, Gu J W 2017 Compos. A: Appl. Sci. Manufact. 102 126Google Scholar

    [16]

    聂永杰, 赵现平, 李盛涛 2019 物理学报 68 227201Google Scholar

    Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar

    [17]

    Zha J W, Qin Q Q, Dang Z M 2019 IEEE Trans. Dielectr. Electr. Insul. 26 868Google Scholar

    [18]

    张成, 李洪飞, 杨延滨, 王卫东, 任成燕, 黄兴溢, 江平开 2020 绝缘材料 53 19Google Scholar

    Zhang C, Li H F, Yang Y B, Wang W D, Ren C Y, Huang X Y, Jiang P K 2020 Insul. Mater. 53 19Google Scholar

    [19]

    Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar

    [20]

    Green C D, Vaughan A S, Stevens G C, Pye A, Sutton S J, Geussens T, Fairhurst M J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 639Google Scholar

    [21]

    Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2023 High Volt. 1–11Google Scholar

    [22]

    Zhao X D, Sun W F, Zhao H 2019 Polymers 11 592Google Scholar

    [23]

    Liu Y X, Sun J Y, Chen S P, Sha J J, Yang J K 2022 Thermochim. Acta 713 179231Google Scholar

    [24]

    Pleşa I, Noţingher P V, Stancu C, Wiesbrock F, Schlögl S 2018 Polymers 11 24Google Scholar

    [25]

    Zhang H, Shang Y, Li M X, Zhao H, Wang X, Han B Z 2016 RSC Adv. 6 110831Google Scholar

    [26]

    Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F 2018 Polym. Bull. 75 2181Google Scholar

    [27]

    Backens S, Ofe S, Schmidt S, Glück N, Flügge W 2022 Mater. Test. 64 186Google Scholar

    [28]

    Ahmed M, Zhong L S, Li F, Xu N, Gao J H 2022 Materials 15 5857Google Scholar

    [29]

    Kim C, Jin Z J, Jiang P K, Zhu Z S, Wang G L 2006 Polym. Test. 25 553Google Scholar

    [30]

    李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧 2024 物理学报 7 070701Google Scholar

    Li G C, Guo K Y, Zhang J H, Sun W X, Zhu Y W, Li S T, Wei Y H 2024 Acta Phys. Sin. 7 070701Google Scholar

    [31]

    Ding M, He W F, Wang J H, Wang J P 2022 Polymers 14 2282Google Scholar

    [32]

    Wan D, Qi F, Zhou Q, Zhou H Y, Zhao M, Duan X J 2021 J. Electr. Eng. Technol. 16 2885Google Scholar

    [33]

    何勇, 林凯, 梁汉远, 李振展 2023 广东化工 50 79Google Scholar

    He Y, Lin K, Liang H Y, Li Z Z 2023 Guangdong Chem. Ind. 50 79Google Scholar

    [34]

    王兆琛, 段玉兵, 魏艳慧, 李国倡, 兰锐, 郝春成, 雷清泉 2023 高压电器 59 56Google Scholar

    Wang Z C, Duan Y B, Wei Y H, Li G C, Lan R, He C C, Lei Q Q 2023 High Volt. Appar. 59 56Google Scholar

    [35]

    Kim C, Jiang P K, Liu F, Hyon S, Ri M G, Yu Y, Ho M 2019 Polym. Test. 80 106045Google Scholar

    [36]

    廖雁群, 冯冰, 罗潘, 张连杰, 卢志华, 徐阳 2016 绝缘材料 49 1Google Scholar

    Liao Y Q, Feng B, Luo P, Zhang L J, Lu Z H, Xu Y 2016 Insul. Mater. 49 1Google Scholar

    [37]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power Syst. Tech. 44 1276Google Scholar

    [38]

    郑书生, 张宗衡, 孔举, 赵岩, 闫枭虎, 吴诗优 2023 绝缘材料 56 70Google Scholar

    Zheng S S, Zhang Z H, Kong J, Zhao Y, Yan X H, Wu S Y 2023 Insul. Mater. 56 70Google Scholar

    [39]

    Hedir A, Slimani F, Moudoud M, Lamrous O, Durmus A, Fofana I 2022 Eng. Res. Express 4 015038Google Scholar

    [40]

    沈智飞, 柳宝坤, 王国栋, 李诗雨, 王娟, 黄静, 张恒玮, 周凯 2021 绝缘材料 54 60Google Scholar

    Shen Z F, Liu B K, Wang G D, Li S Y, Wang J, Huang J, Zhang H W, Zhou K 2021 Insul. Mater. 54 60Google Scholar

    [41]

    王春逢 2021 硕士学位论文(大连: 大连理工大学)

    Wang C F 2021 M. S. Thesis (Dalian: Dalian University of Technology

    [42]

    张宇涵 2019 硕士学位论文(上海: 东华大学)

    Zhang Y H 2019 M. S. Thesis (Shanghai: Donghua University

    [43]

    朱健 2017 硕士学位论文(成都: 西南交通大学)

    Zhu J 2017 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [44]

    廖瑞金, 解兵, 杨丽君, 梁帅伟, 程涣超, 孙才新, 向彬 2006 电工技术学报 21 17Google Scholar

    Liao R J, Xie B, Yang L J, Liang S W, Cheng H C, Sun C X, Xiang B 2006 Trans. China Electr. Soc. 21 17Google Scholar

    [45]

    He D X, Gu J F, Wang W, Liu S Y, Song S, Yi D H 2017 Polym. Adv. Technol. 28 1020Google Scholar

    [46]

    Kim J, Yoon S, Kim D 2021 J. Electr. Eng. Technol. 16 1Google Scholar

    [47]

    Roy S S, Paramane A, Singh J, Meng F, Dai C, Das A K, Chatterjee S, Chen X R, Tanaka Y 2022 IEEE Trans. Dielectr. Electr. Insul. 30 377Google Scholar

    [48]

    Li L, Ma X M, Guo W 2022 Secur. Commun. Netw. 2022 1Google Scholar

    [49]

    Alghamdi A S, Desuqi R K 2020 Heliyon 6 e03120Google Scholar

    [50]

    孙建宇, 陈绍平, 沙菁㛃, 高俊国, 刘焱鑫, 杨决宽, 倪中华 2022 电机与控制学报 26 31Google Scholar

    Sun J Y, Chen S P, Sha J J, Gao J G, Liu Y X, Yang J K, Ni Z H 2022 Electric Machines and Control. 26 31Google Scholar

    [51]

    Li G C, Wang Z C, Lan R, Wei Y H, Nie Y J, Li S T, Li Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 761Google Scholar

    [52]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar

    [53]

    Li J L, Mou W J, Zhu J X, Hu C Q 2023 J Appl. Polym. Sci. 140 e54420Google Scholar

    [54]

    Wang Y Y, Wang C, Zhang Z X, Xiao K 2017 Nanomaterials 7 320Google Scholar

    [55]

    Zhang C C, Wang T T, Li C Y, Zhao H, Wang X 2023 IEEE Trans. Dielect. Electr. Insul. 30 56Google Scholar

    [56]

    Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E 2019 Polym. Chem. 10 1741Google Scholar

    [57]

    Caffy F, Nicolaÿ R 2019 Polym. Chem. 10 3107Google Scholar

    [58]

    Mao H D, Zhang T T, Guo Z Y, Bai D Y, Wang J, Xiu H, Fu Q 2023 Chin. J. Polym. Sci. 41 1104Google Scholar

    [59]

    Zhao Y B, Mao H D, Zhang T T, Guo Z Y, Bai D Y, Bai H W, Zhang Q, Xiu H, Fu Q 2022 Ind. Eng. Chem. Res. 61 13126Google Scholar

  • 图 1  (a) PE的分子结构; XLPE的(b)分子结构和(c)相结构[19]

    Figure 1.  (a) Molecular structure of PE; (b) molecular structure and (c) phase structure of XLPE[19].

    图 2  XLPE的密度、比热、热扩散率和导热系数随老化时间的变化[23]

    Figure 2.  Variation of density, specific heat, thermal diffusivity and thermal conductivity of XLPE with aging time[23].

    图 3  交联聚乙烯的合成机理[24] (a)辐照交联; (b)硅烷交联; (c)过氧化物交联

    Figure 3.  Synthetic mechanism of cross-linked polyethylene[24]: (a) Irradiation cross-linking; (b) silane cross-linking; (c) peroxide cross-linking.

    图 4  电-热老化过程中的物理反应(a), 化学反应(b)和电缆结构(c)[19,45]

    Figure 4.  Physical reactions (a), chemical reactions (b) and structure of the cable (c) for electro-thermal aging process[19,45].

    图 5  (a)热-氧化老化过程; (b), (c) XLPE在不同老化时间下介电常数和介电损耗的变化[51]

    Figure 5.  (a) Thermal-oxidative aging process; (b), (c) changes in dielectric constant and dielectric loss of XLPE at different aging times[51].

    图 6  纯LDPE和纳米复合材料热老化前后的图示[54]

    Figure 6.  Illustration of neat LDPE and nanocomposites before and after thermal aging[54].

    图 7  XLPE-g-MC的接枝交联反应方案[55]

    Figure 7.  Grafting and cross-linking reaction scheme of XLPE-g-MC[55].

    图 8  PE中通过酰胺三唑环-羧酸单元形成氢键交联的示意图[58]

    Figure 8.  Schematic illustration of formation of H-bonds cross-linking via amide triazole ring-carboxylic acid units in PE[58].

    图 9  (a)类玻璃化LDPE的制备示意图; PE-GMA和EDx的(b)机械性能和(c)电导率[59]

    Figure 9.  (a) Schematic diagram of preparation of LDPE vitrimers; (b) mechanical properties and (c) conductivity of PE-GMA and EDx[59].

  • [1]

    Pourrahimi A M, Kumara S, Palmieri F, Yu L Y, Lund A, Hammarström T, Hagstrand P O, Scheblykin I, Fabiani D, Xu X D, Müller C 2021 Adv. Mater. 33 e2100714Google Scholar

    [2]

    Chen G, Hao M, Xu Z Q, Alun V, Cao J Z, Wang H T 2015 CSEE J. Power Energy Syst. 1 9Google Scholar

    [3]

    张翀, 查俊伟, 王思蛟, 巫运辉, 闫轰达, 李维康, 陈新, 党智敏 2016 绝缘材料 49 1Google Scholar

    Zhang C, Zha J W, Wang S J, Wu Y H, Yan H D, Li W K, Chen X, Dang Z M 2016 Insul. Mater. 49 1Google Scholar

    [4]

    郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)

    Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University Science & Technology

    [5]

    D’Auria S, Pourrahimi A M, Favero A, Neuteboom P, Xu X D, Haraguchi S, Bek M, Kádár R, Dalcanale E, Pinalli R, Müller C, Vachon J 2023 Adv. Funct. Mater. 33 2301878Google Scholar

    [6]

    Wang S J, Zha J W, Wu Y H, Ren L, Dang Z M, Wu J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3350Google Scholar

    [7]

    Wang S J, Zha J W, Li W K, Dang Z M 2016 Appl. Phys. Lett. 108 092902Google Scholar

    [8]

    Wang S J, Zha J W, Li W K, Zhang D L, Dang Z M 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1365Google Scholar

    [9]

    张雅茹, 邵清, 李娟, 袁浩, 李琦, 何金良 2022 石油化工 51 587Google Scholar

    Zhang Y R, Shao Q, Li J, Yuan H, Li Q, He J L 2022 Petrochem. Technol. 51 587Google Scholar

    [10]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [11]

    Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar

    [12]

    Zhang Y Y, Gu G F, Liu J F, Jiang F Y, Fan Y F, Zha J W 2022 Front. Mater. 9 838792Google Scholar

    [13]

    Li H, Li J Y, Li W W, Zhao X T, Wang G L, Alim M A 2013 J. Mater. Sci. : Mater. Electron. 24 1640Google Scholar

    [14]

    Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar

    [15]

    Liang C B, Song P, Gu H B, Ma C, Guo Y Q, Zhang H Y, Xu X J, Zhang Q Y, Gu J W 2017 Compos. A: Appl. Sci. Manufact. 102 126Google Scholar

    [16]

    聂永杰, 赵现平, 李盛涛 2019 物理学报 68 227201Google Scholar

    Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar

    [17]

    Zha J W, Qin Q Q, Dang Z M 2019 IEEE Trans. Dielectr. Electr. Insul. 26 868Google Scholar

    [18]

    张成, 李洪飞, 杨延滨, 王卫东, 任成燕, 黄兴溢, 江平开 2020 绝缘材料 53 19Google Scholar

    Zhang C, Li H F, Yang Y B, Wang W D, Ren C Y, Huang X Y, Jiang P K 2020 Insul. Mater. 53 19Google Scholar

    [19]

    Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar

    [20]

    Green C D, Vaughan A S, Stevens G C, Pye A, Sutton S J, Geussens T, Fairhurst M J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 639Google Scholar

    [21]

    Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2023 High Volt. 1–11Google Scholar

    [22]

    Zhao X D, Sun W F, Zhao H 2019 Polymers 11 592Google Scholar

    [23]

    Liu Y X, Sun J Y, Chen S P, Sha J J, Yang J K 2022 Thermochim. Acta 713 179231Google Scholar

    [24]

    Pleşa I, Noţingher P V, Stancu C, Wiesbrock F, Schlögl S 2018 Polymers 11 24Google Scholar

    [25]

    Zhang H, Shang Y, Li M X, Zhao H, Wang X, Han B Z 2016 RSC Adv. 6 110831Google Scholar

    [26]

    Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F 2018 Polym. Bull. 75 2181Google Scholar

    [27]

    Backens S, Ofe S, Schmidt S, Glück N, Flügge W 2022 Mater. Test. 64 186Google Scholar

    [28]

    Ahmed M, Zhong L S, Li F, Xu N, Gao J H 2022 Materials 15 5857Google Scholar

    [29]

    Kim C, Jin Z J, Jiang P K, Zhu Z S, Wang G L 2006 Polym. Test. 25 553Google Scholar

    [30]

    李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧 2024 物理学报 7 070701Google Scholar

    Li G C, Guo K Y, Zhang J H, Sun W X, Zhu Y W, Li S T, Wei Y H 2024 Acta Phys. Sin. 7 070701Google Scholar

    [31]

    Ding M, He W F, Wang J H, Wang J P 2022 Polymers 14 2282Google Scholar

    [32]

    Wan D, Qi F, Zhou Q, Zhou H Y, Zhao M, Duan X J 2021 J. Electr. Eng. Technol. 16 2885Google Scholar

    [33]

    何勇, 林凯, 梁汉远, 李振展 2023 广东化工 50 79Google Scholar

    He Y, Lin K, Liang H Y, Li Z Z 2023 Guangdong Chem. Ind. 50 79Google Scholar

    [34]

    王兆琛, 段玉兵, 魏艳慧, 李国倡, 兰锐, 郝春成, 雷清泉 2023 高压电器 59 56Google Scholar

    Wang Z C, Duan Y B, Wei Y H, Li G C, Lan R, He C C, Lei Q Q 2023 High Volt. Appar. 59 56Google Scholar

    [35]

    Kim C, Jiang P K, Liu F, Hyon S, Ri M G, Yu Y, Ho M 2019 Polym. Test. 80 106045Google Scholar

    [36]

    廖雁群, 冯冰, 罗潘, 张连杰, 卢志华, 徐阳 2016 绝缘材料 49 1Google Scholar

    Liao Y Q, Feng B, Luo P, Zhang L J, Lu Z H, Xu Y 2016 Insul. Mater. 49 1Google Scholar

    [37]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power Syst. Tech. 44 1276Google Scholar

    [38]

    郑书生, 张宗衡, 孔举, 赵岩, 闫枭虎, 吴诗优 2023 绝缘材料 56 70Google Scholar

    Zheng S S, Zhang Z H, Kong J, Zhao Y, Yan X H, Wu S Y 2023 Insul. Mater. 56 70Google Scholar

    [39]

    Hedir A, Slimani F, Moudoud M, Lamrous O, Durmus A, Fofana I 2022 Eng. Res. Express 4 015038Google Scholar

    [40]

    沈智飞, 柳宝坤, 王国栋, 李诗雨, 王娟, 黄静, 张恒玮, 周凯 2021 绝缘材料 54 60Google Scholar

    Shen Z F, Liu B K, Wang G D, Li S Y, Wang J, Huang J, Zhang H W, Zhou K 2021 Insul. Mater. 54 60Google Scholar

    [41]

    王春逢 2021 硕士学位论文(大连: 大连理工大学)

    Wang C F 2021 M. S. Thesis (Dalian: Dalian University of Technology

    [42]

    张宇涵 2019 硕士学位论文(上海: 东华大学)

    Zhang Y H 2019 M. S. Thesis (Shanghai: Donghua University

    [43]

    朱健 2017 硕士学位论文(成都: 西南交通大学)

    Zhu J 2017 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [44]

    廖瑞金, 解兵, 杨丽君, 梁帅伟, 程涣超, 孙才新, 向彬 2006 电工技术学报 21 17Google Scholar

    Liao R J, Xie B, Yang L J, Liang S W, Cheng H C, Sun C X, Xiang B 2006 Trans. China Electr. Soc. 21 17Google Scholar

    [45]

    He D X, Gu J F, Wang W, Liu S Y, Song S, Yi D H 2017 Polym. Adv. Technol. 28 1020Google Scholar

    [46]

    Kim J, Yoon S, Kim D 2021 J. Electr. Eng. Technol. 16 1Google Scholar

    [47]

    Roy S S, Paramane A, Singh J, Meng F, Dai C, Das A K, Chatterjee S, Chen X R, Tanaka Y 2022 IEEE Trans. Dielectr. Electr. Insul. 30 377Google Scholar

    [48]

    Li L, Ma X M, Guo W 2022 Secur. Commun. Netw. 2022 1Google Scholar

    [49]

    Alghamdi A S, Desuqi R K 2020 Heliyon 6 e03120Google Scholar

    [50]

    孙建宇, 陈绍平, 沙菁㛃, 高俊国, 刘焱鑫, 杨决宽, 倪中华 2022 电机与控制学报 26 31Google Scholar

    Sun J Y, Chen S P, Sha J J, Gao J G, Liu Y X, Yang J K, Ni Z H 2022 Electric Machines and Control. 26 31Google Scholar

    [51]

    Li G C, Wang Z C, Lan R, Wei Y H, Nie Y J, Li S T, Li Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 761Google Scholar

    [52]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar

    [53]

    Li J L, Mou W J, Zhu J X, Hu C Q 2023 J Appl. Polym. Sci. 140 e54420Google Scholar

    [54]

    Wang Y Y, Wang C, Zhang Z X, Xiao K 2017 Nanomaterials 7 320Google Scholar

    [55]

    Zhang C C, Wang T T, Li C Y, Zhao H, Wang X 2023 IEEE Trans. Dielect. Electr. Insul. 30 56Google Scholar

    [56]

    Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E 2019 Polym. Chem. 10 1741Google Scholar

    [57]

    Caffy F, Nicolaÿ R 2019 Polym. Chem. 10 3107Google Scholar

    [58]

    Mao H D, Zhang T T, Guo Z Y, Bai D Y, Wang J, Xiu H, Fu Q 2023 Chin. J. Polym. Sci. 41 1104Google Scholar

    [59]

    Zhao Y B, Mao H D, Zhang T T, Guo Z Y, Bai D Y, Bai H W, Zhang Q, Xiu H, Fu Q 2022 Ind. Eng. Chem. Res. 61 13126Google Scholar

  • [1] Wang Rong, Yang Jing, Zhang Tao, Yu Run-Sheng, Dong Jun-Cai, Zhang Peng, Cao Xing-Zhong, Wang Bao-Yi, Yin Hao. Mechanism of regulating pore structure of polyethyleneimine modified mesoporous silica foam. Acta Physica Sinica, 2023, 72(16): 168104. doi: 10.7498/aps.72.20230675
    [2] Xu Wen-Xue, Liang Xin-Gang, Xu Xiang-Hua, Zhu Yuan. Molecular dynamics simulation of effect of crosslinking on thermal conductivity of silicone rubber. Acta Physica Sinica, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [3] Nie Yong-Jie, Zhao Xian-Ping, Li Sheng-Tao. Influence of trap characteristics on DC surface flashover performance of low density polyethylene in vacuum. Acta Physica Sinica, 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [4] Wen Ya-Fei, Wang Sheng-Zhi, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai. Highly-efficient optical storage of two orthogonal polarization modes in a cold atom ensemble. Acta Physica Sinica, 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [5] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [6] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [7] Feng Qi, Li Meng-Kai, Tang Hai-Tong, Wang Xiao-Dong, Gao Zhong-Min, Meng Fan-Ling. Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films. Acta Physica Sinica, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [8] Ma Guo-Liang, Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Hou Chun-Feng. Tensile deformation mechanism of PE/CNTs irradiated by electrons. Acta Physica Sinica, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [9] Wu Li-Ming, Zhang Xiao-Qing. Piezoelectric property of cross-linked polypropylene piezoelectret and its application in vibration energy harvester. Acta Physica Sinica, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [10] Tu De-Min, Wang Xia, Lü Ze-Peng, Wu Kai, Peng Zong-Ren. Formation and inhibition mechanisms of space charges in direct current polyethylene insulation explained by energy band theory. Acta Physica Sinica, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [11] Chen Xiang-Rong, Xu Yang, Liu Ying, Cao Xiao-Long. Study on conducting characteristics of electrical trees in cross-linked polyethylene cable insulation. Acta Physica Sinica, 2012, 61(8): 087701. doi: 10.7498/aps.61.087701
    [12] Wang Wen-Fang, Chen Ke, Wu Jing-Da, Wen Jin-Hui, Lai Tian-Shu. Influence of long lifetime absorption process on the measurement of ultrafast carrier dynamics. Acta Physica Sinica, 2011, 60(11): 117802. doi: 10.7498/aps.60.117802
    [13] Li Sheng-Tao, Huang Qi-Feng, Sun Jian, Zhang Tuo, Li Jian-Ying. Influence of aggregation structure and traps on surface flashover of XLPE in vacuum. Acta Physica Sinica, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [14] Zhang Ying-Chen, Zhu Hai-Yan, Huang Jing-Nan, Zou Jing, Wu Hong-Yan, Qiu Yi-Ping. Effects of oxygen plasma treatment on tensile deformation of nano-SiO2 sol-gel coating ultra-high molecular weight polyethylene filaments. Acta Physica Sinica, 2009, 58(13): 292-S297. doi: 10.7498/aps.58.292
    [15] Xia Jun-Feng, Zhang Ye-Wen, Zheng Fei-Hu, Lei Qing-Quan. Numerical simulation of space charge packet behavior in low-density polyethylene under direct current voltage. Acta Physica Sinica, 2009, 58(12): 8529-8536. doi: 10.7498/aps.58.8529
    [16] Xie An-Sheng, Li Sheng-Tao, Zheng Xiao-Quan. Dynamics model for electrical tree propagation in cross-linked polyethylene cable insulation under high frequency voltage. Acta Physica Sinica, 2008, 57(6): 3828-3833. doi: 10.7498/aps.57.3828
    [17] Sun Shi-Ju, Teng Feng, Xu Zheng, Zhang Yan-Fen, Hou Yan-Bing. Luminescence properties and energy transfer in the mixed thin film of Alq3 and PVK. Acta Physica Sinica, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [18] Yu Tao, Peng Zeng-Hui, Ruan Sheng-Ping, Xuan Li. Vertically aligned films for liquid crystals fabricated by monomer photo-crosslinking. Acta Physica Sinica, 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
    [19] CHENG JI-XIN, SHI QIANG, SHUANG FENG, ZHU QING-SHI. MAKING LOCAL MODE VIBRATION LONG LIVED BY THE INTERACTION BETWEEN A STRONG MULTI-COLOR LASER FIELD AND MOLECULES. Acta Physica Sinica, 1997, 46(6): 1079-1087. doi: 10.7498/aps.46.1079
    [20] CHENG JI-XIN, SHI QIANG, SHUANG FENG, ZHU QING-SHI. MAKING LOCAL MODE VIBRATION LONG LIVED BY THE INTERACTION BETWEEN A STRONG MONO-COLOR LASER FIELD AND MOLECULES. Acta Physica Sinica, 1997, 46(5): 852-861. doi: 10.7498/aps.46.852
Metrics
  • Abstract views:  3295
  • PDF Downloads:  250
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2024
  • Accepted Date:  26 February 2024
  • Available Online:  19 March 2024
  • Published Online:  05 April 2024

/

返回文章
返回