Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Voice over quantum IP routing based on least relay node constrained optimization strategy

Nie Min Liu Guang-Teng Yang Guang Pei Chang-Xing

Citation:

Voice over quantum IP routing based on least relay node constrained optimization strategy

Nie Min, Liu Guang-Teng, Yang Guang, Pei Chang-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum communication is the interdisciplinary science of quantum mechanics and telecommunication theory. It has advantages of perfect information security and high efficiency in transmission. In recent years, the theoretical and experimental results show that quantum communication systems have the superiority over the traditional communication systems. Quantum communication systems are hopeful for solving the information security problems that everyone is facing today, therefore, they possess broad application prospects and are forming a research hotspot of the telecommunications field currently. On the other hand, Voice over Internet Protocol (VoIP) is the method to transmit the digitized packet voice in Internet around the world. The advantages of VoIP are that it can carry voice, data, video, telephone conference, electronic commerce, and electronic mail economically. VoIP can realize the information storage and retransmission easily and flexibly. However, VoIP also encounters the problem of information security. We are trying to combine the quantum communications network and the VoIP system together and build a brand new network named quantum VoIP network which combines the advantages of both quantum communications and VoIP. The data packets may be delayed and lost in a queue up with a router due to the congestion and link failure during the transmission of quantum information. In order to ensure the performance of quantum VoIP system, the routing optimization strategies are proposed in the paper. The relay technology based on entanglement swapping is adopted. The multiuse quantum communications are realized by giving priority to the quantum channels with the least relay nodes. Theoretical analysis and simulation results show that when the data transmission links are fail to work properly and routers are in congestion, adopting the routing optimization strategies in M/M/m queuing system with the bit error rate (BER) of quantum bit setting to be 0.2 and the number of common channels increasing from 4 to 8,, the percentage of call failure in quantum communication network decreases from 0.25 to 0.024, and the maximum throughput of quantum networks increases from 64 kbps to 132 kbps. In comparison, when the number of common channels is set to be 4 andthe BER of the quantum bit is from 0.3 to 0.1, the maximum throughput of quantum networks increases from 41 kbps to 140 kbps. Thus it can be concluded that the routing optimization strategies proposed in this paper can improve the performance of quantum VoIP system significantly.
      Corresponding author: Liu Guang-Teng, liugt526@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318), and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Nielasen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Zhao Z, Yang T, Chen Y A, Zhang A N, Żkowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401

    [4]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 339

    [5]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [6]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [7]

    Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316

    [8]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. Lett. 85 062311

    [9]

    Daniel G, Thomas J, Sarah C 2011 Phys. Rev. Lett. 109 070503

    [10]

    Pemberton-Ross P J, Alastair P J 2011 Phys. Rev. Lett. 106 34

    [11]

    Zhong W G, Xing K F, Shu M W 2015 Tien Tzu Hsueh PaoActa Electron. Sin. 43 171

    [12]

    Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 物理学报 61 220303]

    [13]

    Pei C X, Yan Y, Liu D, Han B S, Zhao N 2008 Acta Photon. Sin. 37 2422 (in Chinese) [裴昌幸, 阎毅, 刘丹, 韩宝彬, 赵楠 2008 光子学报 37 2422]

    [14]

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304 (in Chinese) [刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304]

    [15]

    Lian T, Nie M 2012 Acta Photon. Sin. 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]

    [16]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]

    [17]

    Sengar H, Dantu R, Wiljesekera D 2006 IEEE Workshop on Voip Management Security 10 1

    [18]

    Goode B 2002 Proc. IEEE 90 1495

    [19]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar. 7-10, 2000 p459

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p269 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第269页]

    [21]

    Li J D, Sheng M 2004 Communication Networks Fundamentials (Beijing: Highter Education Press) pp88-91 (in Chinese) [李建东, 盛敏 2004 通信网络基础 (北京: 高等教育出版社) 第88-91页]

    [22]

    Liu W C 2011 Mobile Communication (Beijing: Peking University Press) pp112-114 (in Chinese) [刘维超 2011 移动通信 (北京: 北京大学出版社) 第112-114页]

  • [1]

    Nielasen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Zhao Z, Yang T, Chen Y A, Zhang A N, Żkowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401

    [4]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 339

    [5]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [6]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [7]

    Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316

    [8]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. Lett. 85 062311

    [9]

    Daniel G, Thomas J, Sarah C 2011 Phys. Rev. Lett. 109 070503

    [10]

    Pemberton-Ross P J, Alastair P J 2011 Phys. Rev. Lett. 106 34

    [11]

    Zhong W G, Xing K F, Shu M W 2015 Tien Tzu Hsueh PaoActa Electron. Sin. 43 171

    [12]

    Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 物理学报 61 220303]

    [13]

    Pei C X, Yan Y, Liu D, Han B S, Zhao N 2008 Acta Photon. Sin. 37 2422 (in Chinese) [裴昌幸, 阎毅, 刘丹, 韩宝彬, 赵楠 2008 光子学报 37 2422]

    [14]

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304 (in Chinese) [刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304]

    [15]

    Lian T, Nie M 2012 Acta Photon. Sin. 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]

    [16]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]

    [17]

    Sengar H, Dantu R, Wiljesekera D 2006 IEEE Workshop on Voip Management Security 10 1

    [18]

    Goode B 2002 Proc. IEEE 90 1495

    [19]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar. 7-10, 2000 p459

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p269 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第269页]

    [21]

    Li J D, Sheng M 2004 Communication Networks Fundamentials (Beijing: Highter Education Press) pp88-91 (in Chinese) [李建东, 盛敏 2004 通信网络基础 (北京: 高等教育出版社) 第88-91页]

    [22]

    Liu W C 2011 Mobile Communication (Beijing: Peking University Press) pp112-114 (in Chinese) [刘维超 2011 移动通信 (北京: 北京大学出版社) 第112-114页]

  • [1] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [2] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao. Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [4] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [5] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [6] Nie Min, Wang Lin-Fei, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Transmission protocol and its performance analysis of quantum communication network based on packet switching. Acta Physica Sinica, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [7] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [8] Nie Min, Zhang Lin, Liu Xiao-Hui. Poisson survival model of quantum entanglement signaling network and fidelity analysis. Acta Physica Sinica, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [9] Xue Le, Nie Min, Liu Xiao-Hui. A model of quantum signaling repeater and its parameters simulation. Acta Physica Sinica, 2013, 62(17): 170305. doi: 10.7498/aps.62.170305
    [10] Zhu Wei, Nie Min. The model design and performance analysis of quantum signaling switch. Acta Physica Sinica, 2013, 62(13): 130304. doi: 10.7498/aps.62.130304
    [11] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [12] Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation. Acta Physica Sinica, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [13] Yin Juan, Qian Yong, Li Xiao-Qiang, Bao Xiao-Hui, Peng Cheng-Zhi, Yang Tao, Pan Ge-Sheng. High-dimensional entanglement for long distance quantum communication. Acta Physica Sinica, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [14] Li Wei, Fan Ming-Yu, Wang Guang-Wei. Arbitrated quantum signature scheme based on entanglement swapping. Acta Physica Sinica, 2011, 60(8): 080302. doi: 10.7498/aps.60.080302
    [15] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [16] Zhao Han, Zhou Xiao-Qing, Yang Xiao-Lin. Establishment of multi-user quantum channel of entangled multi-atom based on cavity QED. Acta Physica Sinica, 2009, 58(9): 5970-5977. doi: 10.7498/aps.58.5970
    [17] Zhou Xiao-Qing, Wu Yun-Wen. Discussion on building the net of quantum teleportation using three-particle entangled states. Acta Physica Sinica, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [18] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. A theoretical scheme for multi-user quantum authentication and key distribution in a network. Acta Physica Sinica, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [20] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Multi-party multi-level quantum key distribution protocol based on entanglement swapping. Acta Physica Sinica, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
Metrics
  • Abstract views:  6233
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2015
  • Accepted Date:  23 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回