Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Magnon Hall effect

Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng
PDF
HTML
Get Citation
  • Hall effect is an ancient but highly potential subfield in condensed matter physics, and its origin can be traced back hundreds of years. In 1879, Hall made a momentous discovery that when a current-carrying conductor is placed in a magnetic field, the Lorentz force pushes its electrons to one side of the conductor. This intriguing phenomenon was dubbed Hall effect. Since then, a series of novel Hall effects have been discovered, including anomalous Hall effect, quantum Hall effect, spin Hall effect, topological Hall effect, and planar Hall effec. Notably, Hall effects play an important role in realizing the information transport, since it can realize the mutual conversion of current in different directions. In bosonic systems such as magnons, a series of magnon Hall effects have been found, jointly driving the development of the magnon-based spintronics. In this perspective, we review the researches of the Hall effect in magnonic system in recent years, and briefly introduce its modern semi-classical theories, including virtual electromagnetic field theory and scattering theory. Furthermore, we introduce the different magnon Hall effects and clarify the physics behind them. Finally, the prospect of magnon Hall effect is discussed.
      Corresponding author: Yan Peng, yan@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402802) and the National Natural Science Foundation of China (Grant Nos. 12074057, 12374103).
    [1]

    Žutić L, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    Lenk B, Ulrichs H, Garbs F, Münzenberg M 2011 Phys. Rep. 507 107Google Scholar

    [3]

    Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar

    [4]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [5]

    Hall E H 1879 Am. J. Math. 2 287Google Scholar

    [6]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [7]

    Jungwirth T, Niu Q, MacDonald A H 2002 Phys. Rev. Lett. 88 207208Google Scholar

    [8]

    Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W, Xiong H, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z, Cava R J, Ong N P 2018 Nat. Phys. 14 451Google Scholar

    [9]

    Tian Y, Ye L, Jin X 2009 Phys. Rev. Lett. 103 087206Google Scholar

    [10]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [11]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603Google Scholar

    [12]

    Kato Y K, Myers R C, Niu Q, Gossard A C, Jawschalom D D 2004 Science 306 1910Google Scholar

    [13]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [14]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Böni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [15]

    Yin G, Liu Y, Barlas Y, Zang J, Lake R K 2015 Phys. Rev. B 92 024411Google Scholar

    [16]

    Göbel B, Mook A, Henk J, Mertig I 2017 Phys. Rev. B 96 060406Google Scholar

    [17]

    Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204Google Scholar

    [18]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [19]

    Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar

    [20]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [21]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [22]

    Heinze S, Bergmann K V, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [23]

    Sundaram G, Niu Q 1999 Phys. Rev. B 59 14915Google Scholar

    [24]

    Matsumoto R, Murakami S 2011 Phys. Rev. Lett. 106 197202Google Scholar

    [25]

    Zhang L, Ren J, Wang J, Li B 2013 Phys. Rev. B 87 144101Google Scholar

    [26]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [27]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [28]

    Katsura H, Nagaosa N, Lee P A 2010 Phys. Rev. Lett. 104 066403Google Scholar

    [29]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297Google Scholar

    [30]

    Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S, Nagaosa N, Tokura Y 2012 Phys. Rev. B 85 134411Google Scholar

    [31]

    Shen K 2020 Phys. Rev. Lett. 124 077201Google Scholar

    [32]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [33]

    Li Z X, Cao Y, Yan P 2021 Phys. Rep. 915 1Google Scholar

    [34]

    Murakami S, Okamoto A 2017 J. Phys. Soc. Jpn. 86 011010Google Scholar

    [35]

    Serga A A, Chumak A V, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002Google Scholar

    [36]

    van Hoogdalem K A, Tserkovnyak Y, Loss D 2013 Phys. Rev. B 87 024402Google Scholar

    [37]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [38]

    Lan J, Xiao J 2021 Phys. Rev. B 103 054428Google Scholar

    [39]

    Lan J, Yu W, Xiao J 2021 Phys. Rev. B 103 214407Google Scholar

    [40]

    Thiele A A 1973 Phys. Rev. Lett. 30 230Google Scholar

    [41]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463Google Scholar

    [42]

    Daniels M W, Yu W, Cheng R, Xiao J, Xiao D 2019 Phys. Rev. B 99 224433Google Scholar

    [43]

    Kim S K, Nakata K, Loss D, Tserkovnyak Y 2019 Phys. Rev. Lett. 122 057204Google Scholar

    [44]

    Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar

    [45]

    Liu Y, Liu T T, Jin Z, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2022 Phys. Rev. B 106 064424Google Scholar

    [46]

    Iwasaki J, Beekman A J, Nagaosa N 2014 Phys. Rev. B 89 064412Google Scholar

    [47]

    Schütte C, Garst M 2014 Phys. Rev. B 90 094423Google Scholar

    [48]

    Berry M V, Mount K E 1972 Rep. Progr. Phys. 35 315Google Scholar

    [49]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [50]

    Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Valdivia A M M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, Herrero P J 2019 Nature 565 337Google Scholar

    [51]

    Kondo H, Akagi Y 2022 Phys. Rev. Res. 4 013186Google Scholar

    [52]

    Schultheiss H, Janssens X, Kampen M V, Ciubotaru F, Hermsdoerfer S J, Obry B, Laraoui A, Serga A A, Lagae L, Slavin A N, Leven B, Hillebrands B 2009 Phys. Rev. Lett. 103 157202Google Scholar

    [53]

    Wang Z, Yuan H Y, Cao Y, Li Z, Duine R A, Yan P 2021 Phys. Rev. Lett. 127 037202Google Scholar

    [54]

    Wang Z, Yuan H Y, Cao Y, Yan P 2022 Phys. Rev. Lett. 129 107203Google Scholar

    [55]

    Schultheiss H, Vogt K, Hillebrands B 2012 Phys. Rev. B 86 054414Google Scholar

    [56]

    Tymchenko M, Gomez-Diaz J S, Lee J, Nookala N, Belkin M A, Alù A 2015 Phys. Rev. Lett. 115 207403Google Scholar

    [57]

    Li G, Chen S, Pholchai N, Reineke B, Wong P W H, Pun E Y B, Cheah K W, Zentgraf T, Zhang S 2015 Nat. Mater. 14 607Google Scholar

    [58]

    Li Y, Yesharim O, Hurvitz I, Karnieli A, Fu S, Porat G, Arie A 2020 Phys. Rev. A 101 033807Google Scholar

    [59]

    Jin Z, Yao X, Wang Z, Yuan H Y, Zeng Z, Wang W, Cao Y S, Yan P 2023 Phys. Rev. Lett. 131 166704Google Scholar

    [60]

    Zyuzin V A, Kovalev A A 2016 Phys. Rev. Lett. 117 217203Google Scholar

    [61]

    Xiao J, Bauer G E W, Uchida K, Saitoh E, Maekawa S 2000 Phys. Rev. B 81 214418

    [62]

    Mook A, Plekhanov K, Klinovaja J, Loss D 2021 Phys. Rev. X 11 021061

    [63]

    Zhang X, Zhang Y, Okamoto S, Xiao D 2019 Phys. Rev. Lett. 123 167202Google Scholar

    [64]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S, Luo J, Sanchez-Yamagishi J, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R, Jarillo-Herrero P 2018 Nature 556 80

    [65]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43

    [66]

    Duan J, Jian Y, Gao Y, Peng H, Zhong J, Feng Q, Mao J, Yao Y 2022 Phys. Rev. Lett. 129 186801Google Scholar

    [67]

    Huang M, Wu Z, Zhang X, Feng X, Zhou Z, Wang S, Chen Y, Cheng C, Sun K, Meng Z Y, Wang N 2023 Phys. Rev. Lett. 131 066301Google Scholar

    [68]

    Wang H, Madami M, Chen J, et al. 2023 Phys. Rev. X 13 021016

  • 图 1  (a)磁子波包的自转和绕着系统边界的磁子流; (b)沿着边界传输且与边界形状无关的磁子流; (c)平衡态时的边界磁子流; (d)温度梯度导致的有限热霍尔磁子流[24]

    Figure 1.  (a) Self-rotation of a magnon wave packet and a magnon edge current; (b) the magnon near the boundary proceeds along the boundary, irrespective of the edge shape; (c) magnon edge current in equilibrium; (d) under the temperature gradient, a finite thermal Hall current will appear[24]

    图 2  DM相互作用在烧绿石(111)平面中诱导的幅角$ \phi_i $分布(a)和在扭曲的钙钛矿的z-x平面中诱导的幅角分布(b)[30]; (c) 磁子的霍尔效应示意图[29]

    Figure 2.  Spital distribution of $ \phi_i $ induced by DM interaction in the (111) plane of the pyrochlore lattice (a) and the z-x plane of the distorted perovskite structure (b)[30]; (c) schematic of magnon Hall effect[29]

    图 3  (a)磁子的极化, 即自旋的进动轨迹和波矢的关系; (b) 偶极-偶极相互作用力在反铁磁体系中诱导的磁子自旋霍尔效应的示意图[31]

    Figure 3.  (a) The polarization, i.e., the trajectory of the spin precession as a function of wave vectors; (b) schematic of magnon spin Hall effect induced by the dipolar interaction[31].

    图 4  (a) 磁椭球中磁子的色散关系; (b) 钇铁石榴石 (YIG) 中不同类型的静磁模自旋波[35]

    Figure 4.  (a) Dispersion relation of SW for a magnetic ellipsoid; (b) different types of magnetostatic SWs in yttrium iron garnet (YIG)[35]

    图 5  在$ H_0=M_0 $情况下, 静磁前向体模式的色散关系(a)和贝里曲率分布(b)[34]

    Figure 5.  Dispersion (a) and Berry curvature (b) for the magnetostatic forwardvolume-wave mode for $ H_0/M_0=1 $[34].

    图 6  (a)磁子经过磁织构之后的斜散射和边跳跃行为[38]; 磁子经过(b)亚铁磁和(c)反铁磁斯格明子之后的偏转轨迹[42,43]; (d)散射理论计算得到的不同入射磁子能量下的微分散射截面, $ \varepsilon_{\rm gap} $为k = 0时的磁子能量[47]; (e)磁子的彩虹散射过程[47]

    Figure 6.  (a) Skew scattering and side jump of spin wave across magnetic texture[38]; the trajectories of spin wave across (b) antiferromagnetic and (c) ferrimagnetic skyrmion[42,43]; (d) differential cross section evaluated from scattering theory for various energies, $ \varepsilon_{\rm gap} $ is the magnon gap[47] at k = 0; (e) the rainbow scattering process of magnons[47]

    图 7  (a)由贝里曲率诱导的反常霍尔效应和贝里曲率偶极子诱导的非线性霍尔效应示意图[50]. (b)非线性磁子流和交换系数$ J_1 $的关系[51]. 磁子的(c)能带、(d)贝里曲率和(e)贝里曲率偶极子在动量空间的分布[51]

    Figure 7.  (a) Schematics of the anomalous Hall effect induced by the finite Berry curvature and the nonlinear Hall effect induced by the finite Berry curvature dipoles in the entire space, respectively[50]. (b) Nonlinear magnon current as a function of exchange constant $ J_1 $[51]. Distribution of (c) the band structure, (d) berry curvature, and (e) berry curvature dipole of magnons in the momentum space[51]

    图 8  (a)非线性三磁子过程示意图; (b) 三磁子散射诱导的磁子频率梳示意图[53]; (c) 非线性四磁子过程示意图

    Figure 8.  (a) Schematic diagram of the nonlinear three-magnon process; (b) schematic diagram of three-magnon scattering induced magnon frequency comb[53]; (c) schematic diagram of the nonlinear four-magnon process

    图 9  (a)磁子非线性拓扑自旋霍尔效应示意图; (b)虚拟磁场BB'的空间分布以及对应磁子的运动轨迹(分别在BB+B'作用下); (c)不同磁子模式的波函数的等值线分布; (d)线性非线性霍尔角和入射磁子频率$ \omega_{\mathrm{s}} $以及非线性阶数m的关系[59]

    Figure 9.  (a) Schematic illustration of the nonlinear topological magnon spin Hall effect in magnon-AFM skyrmion scattering; (b) spatial distribution of dimensionless field B and B' as well as the corresponding spin wave trajectories in real space; (c) isoline maps for different magnon modes; (d) the Hall angle as a function of the incident magnon frequencie $ \omega_{\mathrm{s}} $ and mode index m[59]

  • [1]

    Žutić L, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    Lenk B, Ulrichs H, Garbs F, Münzenberg M 2011 Phys. Rep. 507 107Google Scholar

    [3]

    Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar

    [4]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [5]

    Hall E H 1879 Am. J. Math. 2 287Google Scholar

    [6]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [7]

    Jungwirth T, Niu Q, MacDonald A H 2002 Phys. Rev. Lett. 88 207208Google Scholar

    [8]

    Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W, Xiong H, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z, Cava R J, Ong N P 2018 Nat. Phys. 14 451Google Scholar

    [9]

    Tian Y, Ye L, Jin X 2009 Phys. Rev. Lett. 103 087206Google Scholar

    [10]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [11]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603Google Scholar

    [12]

    Kato Y K, Myers R C, Niu Q, Gossard A C, Jawschalom D D 2004 Science 306 1910Google Scholar

    [13]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [14]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Böni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [15]

    Yin G, Liu Y, Barlas Y, Zang J, Lake R K 2015 Phys. Rev. B 92 024411Google Scholar

    [16]

    Göbel B, Mook A, Henk J, Mertig I 2017 Phys. Rev. B 96 060406Google Scholar

    [17]

    Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204Google Scholar

    [18]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [19]

    Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar

    [20]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [21]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [22]

    Heinze S, Bergmann K V, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [23]

    Sundaram G, Niu Q 1999 Phys. Rev. B 59 14915Google Scholar

    [24]

    Matsumoto R, Murakami S 2011 Phys. Rev. Lett. 106 197202Google Scholar

    [25]

    Zhang L, Ren J, Wang J, Li B 2013 Phys. Rev. B 87 144101Google Scholar

    [26]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [27]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [28]

    Katsura H, Nagaosa N, Lee P A 2010 Phys. Rev. Lett. 104 066403Google Scholar

    [29]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297Google Scholar

    [30]

    Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S, Nagaosa N, Tokura Y 2012 Phys. Rev. B 85 134411Google Scholar

    [31]

    Shen K 2020 Phys. Rev. Lett. 124 077201Google Scholar

    [32]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [33]

    Li Z X, Cao Y, Yan P 2021 Phys. Rep. 915 1Google Scholar

    [34]

    Murakami S, Okamoto A 2017 J. Phys. Soc. Jpn. 86 011010Google Scholar

    [35]

    Serga A A, Chumak A V, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002Google Scholar

    [36]

    van Hoogdalem K A, Tserkovnyak Y, Loss D 2013 Phys. Rev. B 87 024402Google Scholar

    [37]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [38]

    Lan J, Xiao J 2021 Phys. Rev. B 103 054428Google Scholar

    [39]

    Lan J, Yu W, Xiao J 2021 Phys. Rev. B 103 214407Google Scholar

    [40]

    Thiele A A 1973 Phys. Rev. Lett. 30 230Google Scholar

    [41]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463Google Scholar

    [42]

    Daniels M W, Yu W, Cheng R, Xiao J, Xiao D 2019 Phys. Rev. B 99 224433Google Scholar

    [43]

    Kim S K, Nakata K, Loss D, Tserkovnyak Y 2019 Phys. Rev. Lett. 122 057204Google Scholar

    [44]

    Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar

    [45]

    Liu Y, Liu T T, Jin Z, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2022 Phys. Rev. B 106 064424Google Scholar

    [46]

    Iwasaki J, Beekman A J, Nagaosa N 2014 Phys. Rev. B 89 064412Google Scholar

    [47]

    Schütte C, Garst M 2014 Phys. Rev. B 90 094423Google Scholar

    [48]

    Berry M V, Mount K E 1972 Rep. Progr. Phys. 35 315Google Scholar

    [49]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [50]

    Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Valdivia A M M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, Herrero P J 2019 Nature 565 337Google Scholar

    [51]

    Kondo H, Akagi Y 2022 Phys. Rev. Res. 4 013186Google Scholar

    [52]

    Schultheiss H, Janssens X, Kampen M V, Ciubotaru F, Hermsdoerfer S J, Obry B, Laraoui A, Serga A A, Lagae L, Slavin A N, Leven B, Hillebrands B 2009 Phys. Rev. Lett. 103 157202Google Scholar

    [53]

    Wang Z, Yuan H Y, Cao Y, Li Z, Duine R A, Yan P 2021 Phys. Rev. Lett. 127 037202Google Scholar

    [54]

    Wang Z, Yuan H Y, Cao Y, Yan P 2022 Phys. Rev. Lett. 129 107203Google Scholar

    [55]

    Schultheiss H, Vogt K, Hillebrands B 2012 Phys. Rev. B 86 054414Google Scholar

    [56]

    Tymchenko M, Gomez-Diaz J S, Lee J, Nookala N, Belkin M A, Alù A 2015 Phys. Rev. Lett. 115 207403Google Scholar

    [57]

    Li G, Chen S, Pholchai N, Reineke B, Wong P W H, Pun E Y B, Cheah K W, Zentgraf T, Zhang S 2015 Nat. Mater. 14 607Google Scholar

    [58]

    Li Y, Yesharim O, Hurvitz I, Karnieli A, Fu S, Porat G, Arie A 2020 Phys. Rev. A 101 033807Google Scholar

    [59]

    Jin Z, Yao X, Wang Z, Yuan H Y, Zeng Z, Wang W, Cao Y S, Yan P 2023 Phys. Rev. Lett. 131 166704Google Scholar

    [60]

    Zyuzin V A, Kovalev A A 2016 Phys. Rev. Lett. 117 217203Google Scholar

    [61]

    Xiao J, Bauer G E W, Uchida K, Saitoh E, Maekawa S 2000 Phys. Rev. B 81 214418

    [62]

    Mook A, Plekhanov K, Klinovaja J, Loss D 2021 Phys. Rev. X 11 021061

    [63]

    Zhang X, Zhang Y, Okamoto S, Xiao D 2019 Phys. Rev. Lett. 123 167202Google Scholar

    [64]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S, Luo J, Sanchez-Yamagishi J, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R, Jarillo-Herrero P 2018 Nature 556 80

    [65]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43

    [66]

    Duan J, Jian Y, Gao Y, Peng H, Zhong J, Feng Q, Mao J, Yao Y 2022 Phys. Rev. Lett. 129 186801Google Scholar

    [67]

    Huang M, Wu Z, Zhang X, Feng X, Zhou Z, Wang S, Chen Y, Cheng C, Sun K, Meng Z Y, Wang N 2023 Phys. Rev. Lett. 131 066301Google Scholar

    [68]

    Wang H, Madami M, Chen J, et al. 2023 Phys. Rev. X 13 021016

  • [1] ZHAO Chenrui, YANG Qianqian, JIAO Ju, TANG Zhenghua, QIN Minghui. Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field. Acta Physica Sinica, 2025, 74(3): 038502. doi: 10.7498/aps.74.20241033
    [2] YIN Fan, DAI Changjie, ZHANG Ying, YU Hailin, XIAO Yang. Zero damping conditions of magnetic bilayer in microwave cavity. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241730
    [3] Niu Peng-Bin, Luo Hong-Gang. Interplay between Majorana fermion and impurity in thermal-driven transport model. Acta Physica Sinica, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [4] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [5] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [6] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [7] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [8] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [9] Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong. Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions. Acta Physica Sinica, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [10] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [11] Li Kai, Liu Jun, Liu Wei-Qiang. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system. Acta Physica Sinica, 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [12] Li Kai, Liu Jun, Liu Wei-Qiang. Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model. Acta Physica Sinica, 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [13] Su Qing-Feng, Liu Chang-Zhu, Wang Lin-Jun, Xia Yi-Ben. Hall effect of different textured CVD diamond films. Acta Physica Sinica, 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
    [14] Hou Bi-Hui, Liu Feng-Yan, Jiao Bin, Yue Ming. Study of electron density of nanostructure metal Tm. Acta Physica Sinica, 2012, 61(7): 077302. doi: 10.7498/aps.61.077302
    [15] Gu Xiao-Fang, Qian Xuan, Ji Yang, Chen Lin, Zhao Jian-Hua. Observation of current-induced polarization in (Ga,Mn)As via magneto-optic Kerr measurement. Acta Physica Sinica, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [16] Xu Jian-Wei, Wang Shun-Jin. Relativistic mean field theory of electron and first, second-order Rashba effects. Acta Physica Sinica, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [17] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] Ren Min, Zhang Lei, Hu Jiu-Ning, Deng Ning, Chen Pei-Yi. A macroscopic model of current-induced magnetization switching based on magnetic dynamic equation. Acta Physica Sinica, 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [19] Chen Wei-Ping, Feng Shang-Shen, Jiao Zheng-Kuan. Spin polarized dependent Hall effect in metallic granular film Fe15.16Ag84.84. Acta Physica Sinica, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [20] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
Metrics
  • Abstract views:  5949
  • PDF Downloads:  514
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2023
  • Accepted Date:  29 November 2023
  • Available Online:  05 December 2023
  • Published Online:  05 January 2024

/

返回文章
返回