Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dzyaloshinskii-Moriya Interaction in Rare-Earth Transition Metal Ferrimagnetic Materials and Spintronic Applications

ZHANG Yu MENG Gengchen ZHAO Zhiyuan LEI Na WEI Dahai

Citation:

Dzyaloshinskii-Moriya Interaction in Rare-Earth Transition Metal Ferrimagnetic Materials and Spintronic Applications

ZHANG Yu, MENG Gengchen, ZHAO Zhiyuan, LEI Na, WEI Dahai
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Magnetic exchange interactions and the magnetic structures they induce are among the key factors determining magnetization switching. Dzyaloshinskii-Moriya interaction (DMI) is an asymmetric exchange interaction arises from spin-orbit coupling and structural inversion symmetry breaking, which is one of the key mechanisms to induce non-collinear magnetic order and chiral magnetic structures, including magnetic Skyrmion, vortex, chiral domain wall, etc. These magnetic structures enable novel information proceeding devices with ultralow power consumption. More importantly, compared to conventional collinear magnetic structures, non-collinear magnetic order exhibits richer and more novel physical behaviors. With ongoing exploration and research in magnetic materials, Rare-Earth Transition Metal ferrimagnetic materials (CoGd, CoTb, GdFeCo, etc.), which combine spin-orbit coupling of rare-earth elements with the magnetic exchange of transition metals, have been discovered to exhibit ultrafast magnetization dynamics, tunable magnetic structures and rich spin transport phenomena. These properties provide an ideal material platform for studying and manipulating DMI, demonstrating significant potential in designing future high-density magnetic storage and spintronic devices. This review systematically elucidates the microscopic physical origin of DMI, outlines the fundamental characteristics of Rare-Earth Transition Metal ferrimagnetic materials and explores the coupling mechanisms between DMI and ferrimagnetic order. we introduce the fundamental properties of RE-TM systems and their applications in spin logic devices and magnetic memory devices. We focus on discussing the physical phenomena related to DMI in RE-TM systems, including the scaling relationship of DMI in RE-TM, DMI-related spin-orbit torque effects, and the principles and applications of skyrmion-based devices, which would provide both theoretical foundations and technical guidance for future development of advanced spintronic technologies.
  • [1]

    Hirohata A, Yamada K, Nakatani Y, Prejbeanu I-L, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711

    [2]

    Zhao Z, Lin Y, Avsar A 2025 npj 2D Mater. Appl. 9 30

    [3]

    Peng S Z, Zhang Y, Wang M X, Zhang Y G, Zhao W 2014 Wiley Encyclopedia of Electrical and Electronics Engineering

    [4]

    Zhu L, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308

    [5]

    Camley R E, Livesey K L 2023 Surf. Sci. Rep. 78 100605

    [6]

    Fert A, Chshiev M, Thiaville A, Yang H 2023 J. Phys. Soc. Jpn. 92 081001

    [7]

    Mishra K K, Lone A H, Srinivasan S, Fariborzi H, Setti G 2025 Appl. Phys. Rev. 12 011315

    [8]

    Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622

    [9]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [10]

    Moriya T 1960 Physical Review 120 91

    [11]

    Streubel R, Lambert C H, Kent N, Ercius P, N'Diaye A T, Ophus C, Salahuddin S, Fischer P 2018 Adv. Mater. 30 1800199

    [12]

    Montoya S A, Lubarda M V, Lomakin V 2022 Commun. Phys. 5 293

    [13]

    Fert A R 1991 Mater. Sci. Forum 59-60 439

    [14]

    Kuepferling M, Casiraghi A, Soares G, Durin G, Garcia-Sanchez F, Chen L, Back C H, Marrows C H, Tacchi S, Carlotti G 2023 Rev. Mod. Phys. 95 015003

    [15]

    Liu Q, Liu L, Xing G, Zhu L 2024 Nat. Commun. 15 2978

    [16]

    Meng Y, Meng F, Hou M, Zheng Q, Wang B, Zhu R, Feng C, Yu G 2024 J. Phys.: Condens. Matter 36

    [17]

    Yang H, Liang J, Cui Q 2022 Nat. Rev. Phys. 5 43

    [18]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [19]

    Belabbes A, Bihlmayer G, Bechstedt F, Blügel S, Manchon A 2016 Phys. Rev. Lett. 117 247202

    [20]

    Zhu L, Zhu L, Ma X, Li X, Buhrman R A 2022 Commun. Phys. 5 151

    [21]

    Fernández-Pacheco A, Vedmedenko E, Ummelen F, Mansell R, Petit D, Cowburn R P 2019 Nat. Mater. 18 679

    [22]

    Han D-S, Lee K, Hanke J-P, Mokrousov Y, Kim K-W, Yoo W, van Hees Y L W, Kim T-W, Lavrijsen R, You C-Y, Swagten H J M, Jung M-H, Kläui M 2019 Nat. Mater. 18 703

    [23]

    1997 Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 260 127

    [24]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [25]

    Varentcova A S, von Malottki S, Potkina M N, Kwiatkowski G, Heinze S, Bessarab P F 2020 npj Comput. Mater. 6 193

    [26]

    Dai B, Wu D, Razavi S A, Xu S, He H, Shu Q, Jackson M, Mahfouzi F, Huang H, Pan Q, Cheng Y, Qu T, Wang T, Tai L, Wong K, Kioussis N, Wang K L 2023 Sci. Adv. 9 eade6836

    [27]

    Guan S H, Liu Y, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2023 Phys, Rev, B 107 214429

    [28]

    Erickson A, Zhang Q, Vakili H, Li C, Sarin S, Lamichhane S, Jia L, Fescenko I, Schwartz E, Liou S-H, Shield J E, Chai G, Kovalev A A, Chen J, Laraoui A 2024 ACS Nano 18 31261

    [29]

    Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V, Udalov O G 2020 Phys. Rev. Lett. 124 157202

    [30]

    Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H 2014 Nat. Commun. 5 4655

    [31]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [32]

    Zhang S, Baker A A, Komineas S, Hesjedal T 2015 Sci. Rep. 5 15773

    [33]

    Chen S, Lourembam J, Ho P, Toh A K J, Huang J, Chen X, Tan H K, Yap S L K, Lim R J J, Tan H R, Suraj T S, Sim M I, Toh Y T, Lim I, Lim N C B, Zhou J, Chung H J, Lim S T, Soumyanarayanan A 2024 Nature 627 522

    [34]

    Li S, Du A, Wang Y, Wang X, Zhang X, Cheng H, Cai W, Lu S, Cao K, Pan B, Lei N, Kang W, Liu J, Fert A, Hou Z, Zhao W 2022 Sci. Bull. 67 691

    [35]

    Thiaville A, Rohart S, Jué É, Cros V, Fert A 2012 EPL (Europhysics Letters) 100 57002

    [36]

    Pai C-F, Mann M, Tan A J, Beach G S D 2016 Phys, Rev, B 93 144409

    [37]

    Liu Q, Zhu L, Zhang X S, Muller D A, Ralph D C 2022 Appl. Phys. Rev. 9

    [38]

    Quessab Y, Xu J W, Morshed M G, Ghosh A W, Kent A D 2021 Adv. Sci. 8 2100481

    [39]

    Wu J, Zhao X, Liu W, Li Y, Liu L, Ju H, Song Y, Ma J, Zhang Z 2024 Adv. Electron. Mater. 10 2300726

    [40]

    Zhang R Q, Liao L Y, Chen X Z, Xu T, Cai L, Guo M H, Bai H, Sun L, Xue F H, Su J, Wang X, Wan C H, Bai H, Song Y X, Chen R Y, Chen N, Jiang W J, Kou X F, Cai J W, Wu H Q, Pan F, Song C 2020 Phys, Rev, B 101 214418

    [41]

    He W, Wan C, Zheng C, Wang Y, Wang X, Ma T, Wang Y, Guo C, Luo X, Stebliy M E, Yu G, Liu Y, Ognev A V, Samardak A S, Han X 2022 Nano Lett. 22 6857

    [42]

    Wang Y, Zhang J, Zhang J, Zhao Y, Deng X, Zhu T, Luo J, Zhao G, Zhao Y, Dou P, Zhang Y, Huang H, Zheng X, Wang X, Shen B, Wang S 2025 Adv. Funct. Mater. e09661

    [43]

    Kim S, Jang P-H, Kim D-H, Ishibashi M, Taniguchi T, Moriyama T, Kim K-J, Lee K-J, Ono T 2017 Phys, Rev, B 95 220402

    [44]

    Pizzini S, Vogel J, Rohart S, Buda-Prejbeanu L D, Jué E, Boulle O, Miron I M, Safeer C K, Auffret S, Gaudin G, Thiaville A 2014 Phys. Rev. Lett. 113 047203

    [45]

    Liang X, Wang Z, Yan P, Zhou Y 2022 Phys, Rev, B 106 224413

    [46]

    Jiang M, Xu G, Sun L, Niu H, Li C, Yang X, Ji T, Yang M, Cheng J, Ma J, Chen G, Chai G, Miao B, Ding H 2025 Phys, Rev, B 112 L020409

    [47]

    Zou J, Bosco S, Thingstad E, Klinovaja J, Loss D 2024 Phys. Rev. Lett. 132 036701

    [48]

    Cai K, Zhu Z, Lee J M, Mishra R, Ren L, Pollard S D, He P, Liang G, Teo K L, Yang H 2020 Nat. Electron. 3 37

    [49]

    Morshed M G, Khoo K H, Quessab Y, Xu J-W, Laskowski R, Balachandran P V, Kent A D, Ghosh A W 2021 Phys, Rev, B 103 174414

    [50]

    Ren X, Liu L, Cui B, Cheng B, Zhao X, An T, Chu R, Zhang M, Liu W, Zhou G, Kuai W, Hu J 2024 Adv. Electron. Mater. 10 2300752

    [51]

    Bläsing R, Ma T, Yang S-H, Garg C, Dejene F K, N’Diaye A T, Chen G, Liu K, Parkin S S P 2018 Nat. Commun. 9 4984

    [52]

    Siddiqui S A, Han J, Finley J T, Ross C A, Liu L 2018 Phys. Rev. Lett. 121 057701

    [53]

    Binder M, Weber A, Mosendz O, Woltersdorf G, Izquierdo M, Neudecker I, Dahn J R, Hatchard T D, Thiele J U, Back C H, Scheinfein M R 2006 Phys, Rev, B 74 134404

    [54]

    Kim K-J, Kim S K, Hirata Y, Oh S-H, Tono T, Kim D-H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K-J, Ono T 2017 Nat. Mater. 16 1187

    [55]

    Finley J, Liu L 2020 Appl. Phys. Lett. 116 110501

    [56]

    Timopheev A A, Sousa R, Chshiev M, Buda-Prejbeanu L D, Dieny B 2015 Phys, Rev, B 92 104430

    [57]

    Zhang X, Xu Z, Zhu Z 2024 Phys, Rev, B 110 184428

    [58]

    Mishra R, Yu J, Qiu X, Motapothula M, Venkatesan T, Yang H 2017 Phys. Rev. Lett. 118 167201

    [59]

    Zhu L, Ralph D C 2023 Nat. Commun. 14 1778

    [60]

    Ren X, Liu L, Cui B, Cheng B, Liu W, An T, Chu R, Zhang M, Miao T, Zhao X, Zhou G, Hu J 2023 Nano Lett. 23 5927

    [61]

    Xie Z, Yang Y, Chen B, Zhao Z, Qin H, Sun H, Lei N, Zhao J, Wei D 2024 ACS Appl. Mater. Interfaces 16 27944

    [62]

    Lim Y, Khodadadi B, Li J-F, Viehland D, Manchon A, Emori S 2021 Phys, Rev, B 103 024443

    [63]

    Yu J, Bang D, Mishra R, Ramaswamy R, Oh J H, Park H-J, Jeong Y, Van Thach P, Lee D-K, Go G, Lee S-W, Wang Y, Shi S, Qiu X, Awano H, Lee K-J, Yang H 2018 Nat. Mater. 18 29

    [64]

    Meng G, Xie Z, Yang Y, Luo S, Lei N, Wei D, Zhao J 2025 Adv. Funct. Mater. 2501767

    [65]

    Chen D, Xu Y, Tong S, Zheng W, Sun Y, Lu J, Lei N, Wei D, Zhao J 2022 Phys. Rev. Mater. 6 014402

    [66]

    Han X, Wang Z, Wang Y, Wang D, Zheng L, Zhao L, Huang Q, Cao Q, Chen Y, Bai L, Xing G, Tian Y, Yan S 2024 Adv. Funct. Mater. 34 2404679

    [67]

    Wu C, Cui S, Guo Y, Zhang Z, Zhang J, Deng X, Zeng G, Ren C, Li P, Zhou X, Zhang X, Li J, Zhu T, Han X, Zhao J, Wang H, Zhang Y, Liang S, Wu H 2024 Adv. Mater. 37 2414139

    [68]

    Xie X, Wang X, Wang W, Zhao X, Bai L, Chen Y, Tian Y, Yan S 2022 Adv. Mater. 35 2208275

    [69]

    Xu Y, Chen D, Tong S, Chen H, Qiu X, Wei D, Zhao J 2020 Phys. Rev. Appl. 14 034064

    [70]

    Zhu W, Tang M, Pan C, Xie N, Li Y, Xu A, Zhang J, Fan W, Shi Z, Zhai K, Zhou S, Qiu X 2025 Adv. Funct. Mater. 2505415

    [71]

    Park J, Hirata Y, Kang J-H, Lee S, Kim S, Van Phuoc C, Jeong J-R, Park J, Park S-Y, Jo Y, Tsukamoto A, Ono T, Kim S K, Kim K-J 2021 Phys, Rev, B 103 014421

    [72]

    Zhang W, Hehn M, Peng Y, Gorchon J, Remy Q, Lin J X, Hohlfeld J, Malinowski G, Zhao W S, Mangin S 2025 Adv. Funct. Mater. e05423

    [73]

    Cao A, van Hees Y L W, Lavrijsen R, Zhao W, Koopmans B 2020 Phys, Rev, B 102 104412

    [74]

    Chatterjee J, Polley D, Pattabi A, Jang H, Salahuddin S, Bokor J 2021 Adv. Funct. Mater. 32 2107490

    [75]

    Wang S, Wei C, Feng Y, Cao H, Li W, Cao Y, Guan B-O, Tsukamoto A, Kirilyuk A, Kimel A V, Li X 2021 Light Sci. Appl. 10 8

    [76]

    Ding S, Kang M-G, Legrand W, Gambardella P 2024 Phys. Rev. Lett. 132 236702

    [77]

    Zhang Z, Zhu Y, Zhang Y, Zhang K, Nan J, Zheng Z, Zhang Y, Zhao W 2019 IEEE Electron Device Lett. 40 1984

    [78]

    Dong Y, Xu T, Zhou H A, Cai L, Wu H, Tang J, Jiang W 2020 Adv. Funct. Mater. 31 2007485

    [79]

    Liu J, Xu T, Feng H, Zhao L, Tang J, Fang L, Jiang W 2021 Adv. Funct. Mater. 32 2107870

    [80]

    Zhang Z, Zheng Z, Zhang Y, Sun J, Lin K, Zhang K, Feng X, Chen L, Wang J, Wang G, Du Y, Zhang Y, Bournel A, Amiri P K, Zhao W 2021 IEEE Electron Device Lett. 42 152

    [81]

    Zheng Z, Zhang Y, Feng X, Zhang K, Nan J, Zhang Z, Wang G, Wang J, Lei N, Liu D, Zhang Y, Zhao W 2019 Phys. Rev. Appl. 12 044032

    [82]

    Shen L, Zhou Y, Shen K 2022 Appl. Phys. Lett. 121 092403

    [83]

    Chen T, Dumas R K, Eklund A, Muduli P K, Houshang A, Awad A A, Durrenfeld P, Malm B G, Rusu A, Akerman J 2016 Proc. IEEE 104 1919

    [84]

    Jiang S, Yao L, Wang S, Wang D, Liu L, Kumar A, Awad A A, Litvinenko A, Ahlberg M, Khymyn R, Chung S, Xing G, Åkerman J 2024 Appl. Phys. Rev. 11 041309

    [85]

    Shi J, Jin Z, Chen G, Luo X, Xing G, Chen J 2025 Sci. China Phys., Mech. Astron. 68 247501

    [86]

    Shen L, Qiu L, Shen K 2024 npj Comput. Mater. 10 48

    [87]

    Nembach H T, Shaw J M, Weiler M, Jué E, Silva T J 2015 Nat. Phys. 11 825

    [88]

    Rózsa L, Atxitia U, Nowak U 2017 Phys, Rev, B 96 094436

    [89]

    Schlotter S, Agrawal P, Beach G S D 2018 Appl. Phys. Lett. 113 092402

    [90]

    Zhang Y, Kong X, Xu G, Jin Y, Jiang C, Chai G 2022 J. Phys. D: Appl. Phys. 55 195304

    [91]

    Mansuripur M, Ruane M 1986 IEEE Trans. Magn. 22 33

    [92]

    Zhao Z, Su D, Lin T, Xie Z, Zhao D, Zhao J, Lei N, Wei D 2023 Phys. Rev. Appl. 19 044037

    [93]

    Lee J Y, Punkkinen M P J, Schönecker S, Nabi Z, Kádas K, Zólyomi V, Koo Y M, Hu Q M, Ahuja R, Johansson B, Kollár J, Vitos L, Kwon S K 2018 Surf. Sci. 674 51

    [94]

    Kim D-H, Haruta M, Ko H-W, Go G, Park H-J, Nishimura T, Kim D-Y, Okuno T, Hirata Y, Futakawa Y, Yoshikawa H, Ham W, Kim S, Kurata H, Tsukamoto A, Shiota Y, Moriyama T, Choe S-B, Lee K-J, Ono T 2019 Nat. Mater. 18 685

    [95]

    Zhao Z, Xie Z, Sun Y, Yang Y, Cao Y, Liu L, Pan D, Lei N, Wei Z, Zhao J, Wei D 2023 Phys, Rev, B 108 024429

    [96]

    Zheng Z, Zhang Y, Lopez-Dominguez V, Sánchez-Tejerina L, Shi J, Feng X, Chen L, Wang Z, Zhang Z, Zhang K, Hong B, Xu Y, Zhang Y, Carpentieri M, Fert A, Finocchio G, Zhao W, Khalili Amiri P 2021 Nat. Commun. 12 4555

    [97]

    Vermeulen B B, Gama Monteiro M, Giuliano D, Sorée B, Couet S, Temst K, Nguyen V D 2024 Phys. Rev. Appl. 21 024050

    [98]

    Wu H, Nance J, Razavi S A, Lujan D, Dai B, Liu Y, He H, Cui B, Wu D, Wong K, Sobotkiewich K, Li X, Carman G P, Wang K L 2020 Nano Lett. 21 515

    [99]

    Guo Y, Zhang J, Balakrishnan P P, Grutter A J, Yang B, Fitzsimmons M R, Charlton T R, Ambaye H, Zhang X, Huang H, Huang Z, Chen J, Guo C, Han X, Wang K L, Wu H 2024 Phys. Rev. Appl. 21 014045

    [100]

    Zeng G, Wen Y, Wu C, Ren C, Meng D, Zhang J, Li W, Wang H, Luo W, Zhang Y, Dong K, Wu H, Liang S 2023 ACS Appl. Electron. Mater. 5 4168

    [101]

    Kim H J, Moon K W, Tran B X, Yoon S, Kim C, Yang S, Ha J H, An K, Ju T S, Hong J I, Hwang C 2022 Adv. Funct. Mater. 32 2112561

    [102]

    Liu L, Song Y, Zhao X, Liu W, Zhang Z 2022 Adv. Funct. Mater. 32 2200328

    [103]

    Yang S, Zhao Y, Zhang X, Xing X, Du H, Li X, Mochizuki M, Xu X, Åkerman J, Zhou Y 2024 Appl. Phys. Rev. 11 041335

    [104]

    Chen G 2017 Nat. Phys. 13 112

    [105]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162

    [106]

    Kim K, Lee S-H, Shin Y, Kim J-W, Park J-H, Chang J-Y, Choe S-B 2023 Appl. Phys. Express 16 033001

    [107]

    Hirata Y, Kim D-H, Kim S K, Lee D-K, Oh S-H, Kim D-Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S-B, Lee K-J, Ono T 2019 Nat. Nanotechnol. 14 232

    [108]

    Kim S K, Lee K-J, Tserkovnyak Y 2017 Phys, Rev, B 95 140404

    [109]

    Tretiakov O A, Clarke D, Chern G-W, Bazaliy Y B, Tchernyshyov O 2008 Phys. Rev. Lett. 100 127204

    [110]

    Chang Y, Hao H, Wu H, Zuo Y, Wu H, Hou Z, Yu G, Liu X, Xi L, Zhang S, Cui B 2025 Adv. Funct. Mater. 35 2421771

    [111]

    Zhang X, Wan G, Zhang J, Zhang Y-F, Pan J, Du S 2024 Nano Lett. 24 10796

    [112]

    Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S-I, Park S-Y, Kim Y, Kim J-Y, Lee D, Lee O, Choi J W, Min B-C, Koo H C, Chang J 2018 Nat. Commun. 9 959

    [113]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154

    [114]

    Quessab Y, Xu J-W, Cogulu E, Finizio S, Raabe J, Kent A D 2022 Nano Lett. 22 6091

    [115]

    Mallick S, Sassi Y, Prestes N F, Krishnia S, Gallego F, M. Vicente Arche L, Denneulin T, Collin S, Bouzehouane K, Thiaville A, Dunin-Borkowski R E, Jeudy V, Fert A, Reyren N, Cros V 2024 Nat. Commun. 15 8472

    [116]

    Xu T, Zhang Y, Wang Z, Bai H, Song C, Liu J, Zhou Y, Je S-G, N’Diaye A T, Im M-Y, Yu R, Chen Z, Jiang W 2023 ACS Nano 17 7920

    [117]

    Zhang J, Dou P, Xu J, Jiang J, Du H, Zhu T, Luo J, Zhao G, Wang Y, Qiu Q, Feng L, Deng X, Ma T, Zhou S, Shen B, Wang S 2025 Adv. Mater. 37 2413700

    [118]

    Li Z, Su J, Lin S-Z, Liu D, Gao Y, Wang S, Wei H, Zhao T, Zhang Y, Cai J, Shen B 2021 Nat. Commun. 12 5604

    [119]

    Zuo S, Qiao K, Zhang Y, Li Z, Zhao T, Jiang C, Shen B 2022 Adv. Sci. 10 2205574

    [120]

    Lin T, Zhang X, Vernier N, Wang X, Dong E, Chen C, Niu J, Sun Y, Yang L, Zheng W, Su D, Lei N, Zhao W 2022 Phys, Rev, B 106 184407

    [121]

    Pöllath S, Lin T, Lei N, Zhao W, Zweck J, Back C H 2020 Ultramicroscopy 212 112973

    [122]

    Song K M, Jeong J-S, Pan B, Zhang X, Xia J, Cha S, Park T-E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148

    [123]

    Sun Y, Lin T, Lei N, Chen X, Kang W, Zhao Z, Wei D, Chen C, Pang S, Hu L, Yang L, Dong E, Zhao L, Liu L, Yuan Z, Ullrich A, Back C H, Zhang J, Pan D, Zhao J, Feng M, Fert A, Zhao W 2023 Nat. Commun. 14 3434

  • [1] ZHAO Chenrui, YANG Qianqian, JIAO Ju, TANG Zhenghua, QIN Minghui. Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field. Acta Physica Sinica, doi: 10.7498/aps.74.20241033
    [2] WANG Tao, SHI Jiaxin, XUE Wuhong, XU Xiaohong. Research advances in two-dimensional non-layered magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.74.20251177
    [3] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, doi: 10.7498/aps.73.20240129
    [4] Shi Meng, Wang Wei-Wei, Du Hai-Feng. Exploring approximate analytical expression for magnetic skyrmion structure based on symbolic regression method. Acta Physica Sinica, doi: 10.7498/aps.73.20231473
    [5] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231244
    [6] Zhao Chen-Rui, Wei Yun-Xin, Liu Ting-Ting, Qin Ming-Hui. Dynamics of ferrimagnetic domain walls driven by sinusoidal microwave magnetic field. Acta Physica Sinica, doi: 10.7498/aps.72.20230913
    [7] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.71.20220301
    [8] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.70.20202146
    [9] Niu Peng-Bin, Luo Hong-Gang. Interplay between Majorana fermion and impurity in thermal-driven transport model. Acta Physica Sinica, doi: 10.7498/aps.70.20202241
    [10] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, doi: 10.7498/aps.69.20191773
    [11] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, doi: 10.7498/aps.67.20180554
    [12] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, doi: 10.7498/aps.65.118105
    [13] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, doi: 10.7498/aps.65.170301
    [14] Zou Qin, Hu Xiao-Mian, Liu Jin-Ming. Effects of Dzyaloshinskii-Moriya interaction and intrinsic decoherence on quantum dense coding via a two-qubit Heisenberg spin system. Acta Physica Sinica, doi: 10.7498/aps.64.080302
    [15] Zhang Ying-Li, Zhou Bin. Thermal entanglement in the four-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, doi: 10.7498/aps.60.120301
    [16] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, doi: 10.7498/aps.60.030303
    [17] Wang Yan-Hui, Xia Yun-Jie. Pairwise entanglement in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, doi: 10.7498/aps.58.7479
    [18] Shan Chuan-Jia, Cheng Wei-Wen, Liu Tang-Kun, Huang Yan-Xia, Li Hong. The entanglement in one-dimensional random XY spin chain with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, doi: 10.7498/aps.57.2687
    [19] Cai Zhuo, Lu Wen-Bin, Liu Yong-Jun. Effects of the staggered Dzyaloshinskii-Moriya interaction on entanglement in antiferromagnetic Heisenberg chain. Acta Physica Sinica, doi: 10.7498/aps.57.7267
    [20] Zhang Song-Jun, Jiang Jian-Jun, Liu Yong-Jun. Quantum phase transition as a result of magnetic frustrations in a ferrimagnetic Heisenberg system. Acta Physica Sinica, doi: 10.7498/aps.57.531
Metrics
  • Abstract views:  30
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  03 December 2025
  • /

    返回文章
    返回