Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring approximate analytical expression for magnetic skyrmion structure based on symbolic regression method

Shi Meng Wang Wei-Wei Du Hai-Feng

Citation:

Exploring approximate analytical expression for magnetic skyrmion structure based on symbolic regression method

Shi Meng, Wang Wei-Wei, Du Hai-Feng
cstr: 32037.14.aps.73.20231473
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Magnetic skyrmion is a kind of nontrivial topological magnetic structure, which can exist stably in chiral magnet with Dzyaloshinskii-Moriya (DM) interaction, and its static and dynamic properties are closely related to its structural characteristics. However, there are no general analytical expressions for skyrmion profiles. Therefore, many researchers have provided approximate solutions. In this paper, a new approach to exploring magnetic skyrmion structures is introduced by using a symbolic regression approach. Considering the influence of DM interaction and external magnetic field on magnetic skyrmion structure, two suitable approximate expressions are obtained through symbolic regression algorithms. The applicability of these expressions depends on the dominant interaction. The research results in this work validate the powerful capability of symbolic regression algorithms in exploring the magnetic skyrmion profiles. So, the present study provides a new method for finding the analytical expressions for magnetic structure.
      Corresponding author: Du Hai-Feng, duhf@hmfl.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403603), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB33030100), the National Natural Science Foundation of China (Grant No. 12241406), the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 52325105), the Equipment Development Project of Chinese Academy of Sciences, China (Grant No. YJKYYQ20180012), and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences, China (Grant No. YSBR-084).
    [1]

    Abanov Ar, Pokrovsky V L 1998 Phys. Rev. B 58 R8889Google Scholar

    [2]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [3]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Bluegel S 2011 Nat. Phys. 7 713Google Scholar

    [4]

    Wei W S, He Z D, Qu Z, Du H F 2021 Rare Met. 40 3076Google Scholar

    [5]

    Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y, Zhao G P 2022 Rare Met. 41 2200Google Scholar

    [6]

    Braun H 1994 Phys. Rev. B 50 16485Google Scholar

    [7]

    Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R 2015 Phys. Rev. Lett. 114 177203Google Scholar

    [8]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422Google Scholar

    [9]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [10]

    Buttner F, Lemesh I, Beach G S D 2018 Sci. Rep. 8 4464Google Scholar

    [11]

    Komineas S, Melcher C, Venakides S 2020 Nonlinearity 33 3395Google Scholar

    [12]

    Komineas S, Melcher C, Venakides S 2021 Physica D 418 132842Google Scholar

    [13]

    Komineas S, Melcher C, Venakides S 2023 New J. Phys. 25 023013Google Scholar

    [14]

    Udrescu S M, Tegmark M 2020 Sci. Adv. 6 eaay2631Google Scholar

    [15]

    Kim S, Lu P Y, Mukherjee S, Gilbert M, Jing L, Ceperic V, Soljacic M 2021 IEEE Trans. Neural Networks Learn. Syst. 32 4166Google Scholar

    [16]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [17]

    Sun S, Ouyang R, Zhang B, Zhang T Y 2019 MRS Bull. 44 559Google Scholar

    [18]

    Koksbang S M 2023 Phys. Rev. D 107 103522Google Scholar

    [19]

    Hernandez A, Balasubramanian A, Yuan F, Mason S A M, Mueller T 2019 NPJ Comput. Mater. 5 112Google Scholar

    [20]

    Baldi P, Sadowski P, Whiteson D 2014 Nat. Commun. 5 4308Google Scholar

    [21]

    Carleo G, Troyer M 2017 Science 355 602Google Scholar

    [22]

    Zhao G P, Zhao L, Shen L C, Zou J, Qiu L 2019 Chin. Phys. B 28 77505Google Scholar

    [23]

    Jones A 1993 Nature 363 222Google Scholar

    [24]

    Cranmer M 2023 arXiv: 10.48550/arXiv.2305.01582 [astro-ph.IM

    [25]

    Wu H, Hu X, Jing K, Wang X R 2021 Commun. Phys. UK 4 1Google Scholar

  • 图 1  磁性斯格明子结构 (a) 布洛赫型斯格明子; (b) 奈尔型斯格明子; (c)单磁畴壁

    Figure 1.  Magnetic skyrmion structures: (a) Bloch-type skyrmion; (b) Néel-type skyrmion; (c) magnetic domain wall.

    图 2  符号回归算法中二叉树结构与遗传操作示意图 (a) 用二叉树表示公式形式; (b) 复制操作; (c) 交叉操作; (d) 变异操作

    Figure 2.  Binary tree structure and schematic diagrams of genetic operations in symbolic regression: (a) Representing the formula in binary tree form; (b) copy operation; (c) crossover operation; (d) mutation operation.

    图 3  符号回归方法流程图

    Figure 3.  Flowchart of the symbolic regression.

    图 4  不同AK值下, (8)式拟合结果与一维单磁畴壁结构模拟数据比较图 (a) A = 1×10–12 J/m, K = 1×103 J/m3; (b) A = 5×10–12 J/m, K = 2×103 J/m3; (c) A = 13×10–12 J/m, K = 3×103 J/m3

    Figure 4.  Comparison between the fitting results of Eq. (8) and simulation data of one-dimensional magnetic domain wall under various values of A and K: (a) A = 1×10–12 J/m, K = 1×103 J/m3; (b) A = 5×10–12 J/m, K = 2×103 J/m3; (c) A = 13×10–12 J/m, K = 3×103 J/m3.

    图 5  $ {\lambda }^{2}/h=0.01 $ 时的帕累托最优 (a) (10a)式; (b) (10b)式

    Figure 5.  Pareto optimum when $ {\lambda }^{2}/h=0.01 $: (a) Eq. (10a); (b) Eq. (10b).

    图 6  不同$ {\lambda }^{2}/h $大小下(10a)式与 (10b)式的拟合情况 (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9. (e) 不同$ {\lambda }^{2}/h $大小下, 更高适应度解析式统计图(1代表(10a)式, 2代表(10b)式)

    Figure 6.  Fitting results of equations (10a) and (10b) under various $ {\lambda }^{2}/h $ values: (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9$ . $ (e) Statistical chart of equations with higher fitness under various $ {\lambda }^{2}/h $ values (1 represents equation (10a), 2 represents equation (10b)).

    图 7  不同$ {\lambda }^{2}/h $大小下 (11a)式或(11b)式的拟合情况 (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9

    Figure 7.  Fitting results of Eq. (11a) or Eq. (11b) under various $ {\lambda }^{2}/h $ values: (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9.

    图 8  不同$ {\lambda }^{2}/h $大小下, (11a)式或(11b)式的拟合情况 (a) 0.009; (b) 0.015; (c) 0.139; (d) 0.192; (e) 0.227; (f) 0.769

    Figure 8.  Fitting results of Eq. (11a) or (11b) under various $ {\lambda }^{2}/h $ values: (a) 0.009; (b) 0.015; (c) 0.139; (d) 0.192; (e) 0.227; (f) 0.769

  • [1]

    Abanov Ar, Pokrovsky V L 1998 Phys. Rev. B 58 R8889Google Scholar

    [2]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [3]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Bluegel S 2011 Nat. Phys. 7 713Google Scholar

    [4]

    Wei W S, He Z D, Qu Z, Du H F 2021 Rare Met. 40 3076Google Scholar

    [5]

    Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y, Zhao G P 2022 Rare Met. 41 2200Google Scholar

    [6]

    Braun H 1994 Phys. Rev. B 50 16485Google Scholar

    [7]

    Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R 2015 Phys. Rev. Lett. 114 177203Google Scholar

    [8]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422Google Scholar

    [9]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [10]

    Buttner F, Lemesh I, Beach G S D 2018 Sci. Rep. 8 4464Google Scholar

    [11]

    Komineas S, Melcher C, Venakides S 2020 Nonlinearity 33 3395Google Scholar

    [12]

    Komineas S, Melcher C, Venakides S 2021 Physica D 418 132842Google Scholar

    [13]

    Komineas S, Melcher C, Venakides S 2023 New J. Phys. 25 023013Google Scholar

    [14]

    Udrescu S M, Tegmark M 2020 Sci. Adv. 6 eaay2631Google Scholar

    [15]

    Kim S, Lu P Y, Mukherjee S, Gilbert M, Jing L, Ceperic V, Soljacic M 2021 IEEE Trans. Neural Networks Learn. Syst. 32 4166Google Scholar

    [16]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [17]

    Sun S, Ouyang R, Zhang B, Zhang T Y 2019 MRS Bull. 44 559Google Scholar

    [18]

    Koksbang S M 2023 Phys. Rev. D 107 103522Google Scholar

    [19]

    Hernandez A, Balasubramanian A, Yuan F, Mason S A M, Mueller T 2019 NPJ Comput. Mater. 5 112Google Scholar

    [20]

    Baldi P, Sadowski P, Whiteson D 2014 Nat. Commun. 5 4308Google Scholar

    [21]

    Carleo G, Troyer M 2017 Science 355 602Google Scholar

    [22]

    Zhao G P, Zhao L, Shen L C, Zou J, Qiu L 2019 Chin. Phys. B 28 77505Google Scholar

    [23]

    Jones A 1993 Nature 363 222Google Scholar

    [24]

    Cranmer M 2023 arXiv: 10.48550/arXiv.2305.01582 [astro-ph.IM

    [25]

    Wu H, Hu X, Jing K, Wang X R 2021 Commun. Phys. UK 4 1Google Scholar

Metrics
  • Abstract views:  3646
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2023
  • Accepted Date:  15 November 2023
  • Available Online:  24 November 2023
  • Published Online:  05 January 2024

/

返回文章
返回