Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Skyrmions in magnetic thin film heterostructures

Li Wen-Jing Guang Yao Yu Guo-Qiang Wan Cai-Hua Feng Jia-Feng Han Xiu-Feng

Citation:

Skyrmions in magnetic thin film heterostructures

Li Wen-Jing, Guang Yao, Yu Guo-Qiang, Wan Cai-Hua, Feng Jia-Feng, Han Xiu-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic skyrmion is expected to function as an ideal information carrier for ultra-high density magnetic storage and logic functional device in the future due to its superior properties, such as topological protection, small size, and low driving current density for motion. In order to meet the basic requirements for writing and reading information in devices, one needs to be able to accurately generate, manipulate, and probe skyrmion at room temperature. Given that the history and latest developments of the skyrmion research will be reviewed comprehensively in other articles, in order to avoid repetition, in this article we briefly review a series of recent research advances we have made in magnetic multilayer materials in recent years, and discuss the advantages of relevant device applications and problems that need to be solved. They are included in three aspects as follows. 1) The room temperature skyrmion was observed in a wedge film Ta (5 nm)/Co20Fe60B20 (CoFeB) (1 nm)/Ta (t)/MgO (2 nm)/Ta (2 nm) by a polar magneto-optical Kerr microscope. Results showed that skyrmion can be created at room temperature by controlling the perpendicular magnetic anisotropy of magnetic thin film. In the following, we designed a thin film heterojunction containing an antiferromagnetic layer IrMn. The introduction of antiferromagnetic material can produce an exchange bias field in the magnetic layer, which can play the same role as an external magnetic field, making it possible to realize zero-field skyrmion. In this study, we have successfully observed a stable skyrmion at room temperature and zero magnetic field. 2) The spin-orbit torque generated by the current proved to be able to be used to manipulate the created skyrmion. In the fourth part of this review, we discuss the dynamic process of skyrmion driven by spin-orbit torque in IrMn/CoFeB heterojunctions, and the chirality of skyrmion can be deduced by the direction of its longitudinal motion driven by an applied current. Finally, a principle device based on the skyrmion is further fabricated. In this device, a set of binary data was recorded in the track in the presence and absence of skyrmion. Generating and manipulating numbers of skyrmions were realized by using a series of pulse currents with different amplitudes and widths. The detection of a skyrmion can be achieved by using a magnetic tunnel junction at the right end of the device. 3) The advantages of skyrmion as a storage device and the problems that need to be solved for practical applications were discussed.
      Corresponding author: Yu Guo-Qiang, guoqiangyu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China and Science Foundation Ireland International Partnership Program (Grant No. 51861135104), Youth 1000 Plan, the National Key Research and Development Program of China (Grant No. 2017YFA0206200), the National Natural Science Foundation of China (Grant Nos. 11434014, 51620105004, 11174341, 51701203), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH016), and the International Partnership Program of the Chinese Academy of Sciences (CAS) (Grant No. 112111KYSB20170090).
    [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [2]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [3]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [4]

    Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E, Hoffmann A 2017 Sci. Rep. 704 1

    [5]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [6]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [7]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [8]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [9]

    Sun L, Cao R, Miao B, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H 2013 Phys. Rev. Lett. 110 167201

    [10]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [11]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [12]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [13]

    Zhang X, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [14]

    Huang Y Q, Kang W, Zhang X C, Zhou Y, Zhao W S 2017 Nanotechnology 28 08LT02

    [15]

    Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L 2018 Nano Lett. 18 1180

    [16]

    Wang C J, Xiao D, Chen X, Zhou Y, Liu Y W 2017 New J. Phys. 19 083008

    [17]

    Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L, Xue D S 2015 New J. Phys. 17 023061

    [18]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [19]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [20]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotech. 8 527

    [22]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A, Huo Y, Ma T, Chen Y, Kwon H, Won C, Qiu Z, Schmid A, Wu Y 2013 Phys. Rev. Lett. 110 77204

    [23]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [24]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [25]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [26]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [27]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [28]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2010 Nature Mater. 10 106

    [29]

    Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R 2017 Nano Lett. 17 2921

    [30]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [31]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [32]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [33]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 06403

    [34]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [35]

    Peng L C, Zhag Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075

    [36]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [37]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [38]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [39]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162

    [40]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2016 Nano Lett. 17 261

    [41]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [42]

    Legrand W, Maccariello D, Reyren N, Garcia K, Moutafis C, Moreau-Luchaire C, Collin S, Bouzehouane K, Cros V, Fert A 2017 Nano Lett. 17 2703

    [43]

    Pulecio J F, Hrabec A, Zeissler K, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.00209

    [44]

    Pulecio J F, Hrabec A, Zeissler K, White R M, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.06869

    [45]

    Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrović A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nature Mater. 16 898

    [46]

    He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G, Zhang Y 2017 Appl. Phys. Lett. 111 202403

    [47]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [48]

    Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, Marrows C 2014 Phys. Rev. B 90 020402

    [49]

    Nembach H, Shaw J, Weiler M, Jue E, Silva T 2015 Nat. Phys. 11 825

    [50]

    Di K, Zhang V, Lim H, Ng S, Kuok M, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [51]

    Heide M, Bihlmayer G, Blugel S 2008 Phys. Rev. B 78 140403

    [52]

    Chauleau J Y, Legrand W, Reyren N, Maccariello D, Collin S, Popescu H, Bouzehouane K, Cros V, Jaouen N, Fert A 2018 Phys. Rev. Lett. 120 037202

    [53]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blugel S 2011 Nat. Phys. 7 713

    [54]

    Tetienne J P, Hingant T, Martinez L J, Rohart S, Thiaville A, Diez L H, Garcia K, Adam J P, Kim J V, Roch J F, Miron I M, Gaudin G, Vila L, Ocker B, Ravelosona D, Jacques V 2015 Nat. Commun. 6 6733

    [55]

    Chen G, Kang S P, Ophus C, N'Diaye A, Diaye A T, Kwon H Y, Qiu R T, Won C, Liu K, Wu Y Z, Schmid A K 2017 Nat. Commun. 8 15302

    [56]

    Pollard S, Garlow J, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [57]

    Korner H S, Stigloher J, Bauer H G, Hata H, Taniguchi T, Moriyama T, Ono T, Back C H 2015 Phys. Rev. B 92 220413

    [58]

    Belmeguenai M, Adam J P, Roussigne Y, Eimer S, Devolder T, Kim J V, Cherif S M, Stashkevich A, Thiaville A 2015 Phys. Rev. B 91 180405

    [59]

    Yu G, Upadhyaya P, Wong K L, Jiang W, Alzate J G, Tang J, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421

    [60]

    Ma X, Yu G, Li X, Wang T, Wu D, Olsson K S, Chu Z, An K, Xiao J Q, Wang K L, Li X 2016 Phys. Rev. B 94 180408

    [61]

    Ma X, Yu G, Razavi S A, Sasaki S S, Li X, Hao K, Tolbert S H, Wang K L, Li X 2017 Phys. Rev. Lett. 119 027202

    [62]

    Ma X, Yu G, Tang C, Li X, He C, Shi J, Wang K L, Li X 2018 Phys. Rev. Lett. 120 157204

    [63]

    Yu G, Wang Z, Abolfath-Beygi M, He C, Li X, Wong K L, Nordeen P, Wu H, Carman G P, Han X, Alhomoudi I A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 072402

    [64]

    Dieny B, Chshiev M 2017 Rev. Mod. Phys. 89 025008

    [65]

    Upadhyaya P, Yu G, Amiri P, Wang K 2015 Phys. Rev. B 92 134411

    [66]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q l, Wu H, Li W, Jiang W, Han X, Li X E, Bleszynski Jayich A C, Amiri P K, Wang K L 2017 Nano Lett. 18 980

    [67]

    Wu D, Yu G, Chen C, Razavi S, Shao Q, Li X, Zhao B, Wong K, He C, Zhang Z, Amiri P, Wang K 2016 Appl. Phys. Lett. 109 222401

    [68]

    Zhang W, Jungfleisch M, Jiang W, Pearson J, Hoffmann A, Freimuth F, Mokrousov Y 2014 Phys. Rev. Lett. 113 196602

  • [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [2]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [3]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [4]

    Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E, Hoffmann A 2017 Sci. Rep. 704 1

    [5]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [6]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [7]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [8]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [9]

    Sun L, Cao R, Miao B, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H 2013 Phys. Rev. Lett. 110 167201

    [10]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [11]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [12]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [13]

    Zhang X, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [14]

    Huang Y Q, Kang W, Zhang X C, Zhou Y, Zhao W S 2017 Nanotechnology 28 08LT02

    [15]

    Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L 2018 Nano Lett. 18 1180

    [16]

    Wang C J, Xiao D, Chen X, Zhou Y, Liu Y W 2017 New J. Phys. 19 083008

    [17]

    Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L, Xue D S 2015 New J. Phys. 17 023061

    [18]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [19]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [20]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotech. 8 527

    [22]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A, Huo Y, Ma T, Chen Y, Kwon H, Won C, Qiu Z, Schmid A, Wu Y 2013 Phys. Rev. Lett. 110 77204

    [23]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [24]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [25]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [26]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [27]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [28]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2010 Nature Mater. 10 106

    [29]

    Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R 2017 Nano Lett. 17 2921

    [30]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [31]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [32]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [33]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 06403

    [34]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [35]

    Peng L C, Zhag Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075

    [36]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [37]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [38]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [39]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162

    [40]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2016 Nano Lett. 17 261

    [41]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [42]

    Legrand W, Maccariello D, Reyren N, Garcia K, Moutafis C, Moreau-Luchaire C, Collin S, Bouzehouane K, Cros V, Fert A 2017 Nano Lett. 17 2703

    [43]

    Pulecio J F, Hrabec A, Zeissler K, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.00209

    [44]

    Pulecio J F, Hrabec A, Zeissler K, White R M, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.06869

    [45]

    Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrović A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nature Mater. 16 898

    [46]

    He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G, Zhang Y 2017 Appl. Phys. Lett. 111 202403

    [47]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [48]

    Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, Marrows C 2014 Phys. Rev. B 90 020402

    [49]

    Nembach H, Shaw J, Weiler M, Jue E, Silva T 2015 Nat. Phys. 11 825

    [50]

    Di K, Zhang V, Lim H, Ng S, Kuok M, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [51]

    Heide M, Bihlmayer G, Blugel S 2008 Phys. Rev. B 78 140403

    [52]

    Chauleau J Y, Legrand W, Reyren N, Maccariello D, Collin S, Popescu H, Bouzehouane K, Cros V, Jaouen N, Fert A 2018 Phys. Rev. Lett. 120 037202

    [53]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blugel S 2011 Nat. Phys. 7 713

    [54]

    Tetienne J P, Hingant T, Martinez L J, Rohart S, Thiaville A, Diez L H, Garcia K, Adam J P, Kim J V, Roch J F, Miron I M, Gaudin G, Vila L, Ocker B, Ravelosona D, Jacques V 2015 Nat. Commun. 6 6733

    [55]

    Chen G, Kang S P, Ophus C, N'Diaye A, Diaye A T, Kwon H Y, Qiu R T, Won C, Liu K, Wu Y Z, Schmid A K 2017 Nat. Commun. 8 15302

    [56]

    Pollard S, Garlow J, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [57]

    Korner H S, Stigloher J, Bauer H G, Hata H, Taniguchi T, Moriyama T, Ono T, Back C H 2015 Phys. Rev. B 92 220413

    [58]

    Belmeguenai M, Adam J P, Roussigne Y, Eimer S, Devolder T, Kim J V, Cherif S M, Stashkevich A, Thiaville A 2015 Phys. Rev. B 91 180405

    [59]

    Yu G, Upadhyaya P, Wong K L, Jiang W, Alzate J G, Tang J, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421

    [60]

    Ma X, Yu G, Li X, Wang T, Wu D, Olsson K S, Chu Z, An K, Xiao J Q, Wang K L, Li X 2016 Phys. Rev. B 94 180408

    [61]

    Ma X, Yu G, Razavi S A, Sasaki S S, Li X, Hao K, Tolbert S H, Wang K L, Li X 2017 Phys. Rev. Lett. 119 027202

    [62]

    Ma X, Yu G, Tang C, Li X, He C, Shi J, Wang K L, Li X 2018 Phys. Rev. Lett. 120 157204

    [63]

    Yu G, Wang Z, Abolfath-Beygi M, He C, Li X, Wong K L, Nordeen P, Wu H, Carman G P, Han X, Alhomoudi I A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 072402

    [64]

    Dieny B, Chshiev M 2017 Rev. Mod. Phys. 89 025008

    [65]

    Upadhyaya P, Yu G, Amiri P, Wang K 2015 Phys. Rev. B 92 134411

    [66]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q l, Wu H, Li W, Jiang W, Han X, Li X E, Bleszynski Jayich A C, Amiri P K, Wang K L 2017 Nano Lett. 18 980

    [67]

    Wu D, Yu G, Chen C, Razavi S, Shao Q, Li X, Zhao B, Wong K, He C, Zhang Z, Amiri P, Wang K 2016 Appl. Phys. Lett. 109 222401

    [68]

    Zhang W, Jungfleisch M, Jiang W, Pearson J, Hoffmann A, Freimuth F, Mokrousov Y 2014 Phys. Rev. Lett. 113 196602

  • [1] Zhao Ke-Nan, Li Sheng, Lu Zeng-Xing, Lao Bin, Zheng Xuan, Li Run-Wei, Wang Zhi-Ming. Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in SrRuO3 thin films. Acta Physica Sinica, 2024, 73(11): 117701. doi: 10.7498/aps.73.20240367
    [2] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting. SnS2/In2O3 based gas sensors and its high performance of detecting NO2 at room temperature. Acta Physica Sinica, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [3] Guo Xi, Zuo Ya-Lu, Cui Bao-Shan, Shen Tie-Long, Sheng Yan-Bin, Xi Li. Ion irradiation modulated magnetic properties of materials and its applications. Acta Physica Sinica, 2024, 73(13): 136101. doi: 10.7498/aps.73.20240541
    [4] Shi Meng, Wang Wei-Wei, Du Hai-Feng. Exploring approximate analytical expression for magnetic skyrmion structure based on symbolic regression method. Acta Physica Sinica, 2024, 73(1): 011201. doi: 10.7498/aps.73.20231473
    [5] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [6] Dong Yi-Meng, Sun Yong-Jiao, Hou Yu-Chen, Wang Bing-Liang, Lu Zhi-Yuan, Zhang Wen-Dong, Hu Jie. Preparation and room-temperature NO2 sensitivity of SnO2/ZnS heterojunctions gas sensor. Acta Physica Sinica, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [7] Zhang Jing-Yan, Dou Peng-Wei, Zhao Yun-Chi, Zhang Shi-Lei, Liu Jia-Qiang, Qi Jie, Lü Hao-Chang, Liu Ruo-Yang, Yu Guang-Hua, Jiang Yong, Shen Bao-Gen, Wang Shou-Guo. Multi-field manipulation in Hall balance. Acta Physica Sinica, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [8] Liu Yi, Qian Zheng-Hong, Zhu Jian-Guo. Research progress of room temperature magnetic skyrmion and its application. Acta Physica Sinica, 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [9] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [10] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo. Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [11] Hu Yang-Fan, Wan Xue-Jin, Wang Biao. Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [12] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [13] Liang Xue, Zhao Li, Qiu Lei, Li Shuang, Ding Li-Hong, Feng You-Hua, Zhang Xi-Chao, Zhou Yan, Zhao Guo-Ping. Skyrmions-based magnetic racetrack memory. Acta Physica Sinica, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [14] Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device. Acta Physica Sinica, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [15] Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui. Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature. Acta Physica Sinica, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [16] Gu Jian-Jun, Sun Hui-Yuan, Liu Li-Hu, Qi Yun-Kai, Xu Qin. Influence of structural phase transition on Ferromagnetism in Fe-doped TiO2 thin films. Acta Physica Sinica, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [17] Yang Tian-Yong, Kong Chun-Yang, Ruan Hai-Bo, Qin Guo-Ping, Li Wan-Jun, Liang Wei-Wei, Meng Xiang-Dan, Zhao Yong-Hong, Fang Liang, Cui Yu-Ting. Effects of the annealing temperature on microstructure and room-temperature ferromagnetism of N+ ion-implanted ZnO: Mn thin film. Acta Physica Sinica, 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [18] Zheng Yu-Long, Zhen Cong-Mian, Ma Li, Li Xiu-Ling, Pan Cheng-Fu, Hou Deng-Lu. Room-temperature ferromagnetism observed in Si-Al2O3 composite film. Acta Physica Sinica, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [19] Liu Xiao-Dong, Wang Wei-Zhu, Gao Rui-Xin, Zhao Jian-Hua, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Carrier spin relaxation in (Ga,Mn)As at room temperature. Acta Physica Sinica, 2008, 57(6): 3857-3861. doi: 10.7498/aps.57.3857
    [20] Wang Yi, Sun Lei, Han De-Dong, Liu Li-Feng, Kang Jin-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
Metrics
  • Abstract views:  8586
  • PDF Downloads:  672
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2018
  • Accepted Date:  14 May 2018
  • Published Online:  05 July 2018

/

返回文章
返回