Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in SrRuO3 thin films

Zhao Ke-Nan Li Sheng Lu Zeng-Xing Lao Bin Zheng Xuan Li Run-Wei Wang Zhi-Ming

Citation:

Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in SrRuO3 thin films

Zhao Ke-Nan, Li Sheng, Lu Zeng-Xing, Lao Bin, Zheng Xuan, Li Run-Wei, Wang Zhi-Ming
PDF
HTML
Get Citation
  • Spintronic devices utilize the spin property of electrons for the storage, transmission, and processing of information, and they possess inherent advantages such as low power consumption and non-volatility, thus attracting widespread attention from both academia and industry. Spin-orbit torque (SOT) is an efficient method of manipulating magnetic moments through using electric current for writing, controlling the spin-orbit coupling (SOC) effect within materials to achieve the mutual conversion between charge current and spin current. Enhancing the efficiency of charge-spin conversion is a critical issue in the field of spintronics. Strontium ruthenate (SRO) in transition metal oxides (TMO) has attracted significant attention as a spin source material in SOT devices due to its large and tunable charge-to-spin conversion efficiency. However, current research on SOT control in SRO primarily focuses on utilizing substrate strain, with limited exploration of other control methods. Crystal orientation can produce various novel physical properties by affecting material symmetry and electronic structure, which is one of the important means to control the properties of TMO materials. Considering the close correlation between the SOT effect and electronic structure as well as surface states, crystal orientation is expected to affect SOT properties by adjusting the electronic band structure of TMO. This work investigates the effect of crystal orientation on the SOT performance of SrRuO3 film and develops a novel approach for SOT control. The (111)-oriented SRO/CoPt heterostructures and SOT devices are prepared by using pulse laser deposition, magnetron sputtering, and micro-nano processing techniques. Through harmonic Hall voltage(HHV) measurements, we find that the SOT efficiency reaches 0.39, and the spin Hall conductivity attains 2.19×105$\hbar $/2e Ω–1·m–1, which are 86% and 369% higher than those of the (001) orientation, respectively. Furthermore, current-driven perpendicular magnetization switching is achieved in SrRuO3(111) device at a low critical current density of 2.4×1010 A/m2, which is 37% lower than that of the (001) orientation. These results demonstrate that the crystal orientation can serve as an effective approach to significantly enhancing the comprehensive performance of SrRuO3-based SOT devices, thus providing a new idea for developing high-efficiency spintronic devices.
      Corresponding author: Li Run-Wei, runweili@nimte.ac.cn ; Wang Zhi-Ming, zhiming.wang@nimte.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0307800, 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 12174406, 11874367, 51931011, 52127803).
    [1]

    Sasikanth M, Dmitri E N, Ian A Y 2018 Nat. Phys. 14 338Google Scholar

    [2]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Cengiz Onbaşlı M, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446Google Scholar

    [3]

    Manchon A, Železný J, M. Miron I, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [4]

    Miron I M, Garello K, Gaudin G, Zermatten P-J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [5]

    Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J, Yang S, Garello K, Zhang W 2021 IEEE T. Magn. 57 800439

    [6]

    Chen H, Yi D 2021 APL Mater. 9 060908Google Scholar

    [7]

    劳斌, 郑轩, 李晟, 汪志明 2023 物理学报 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [8]

    Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski, Kim Y B, Ralph D C, Eom C B 2018 Proc. Natl. Acad. Sci. 33 16186

    [9]

    Everhardt A S, DC M , Huang X, Sayed S, Gosavi T A, Tang Y, Lin C, Manipatruni S, Young I A, Datta S, Wang J, and Ramesh R 2019 Phys. Rev. Mater. 3 051201

    [10]

    Wang H L, Meng K Y, Zhang P X, Hou J T, Finley J, Han J H, Yang F Y, Liu L Q 2019 Appl. Phys. Lett. 114 232406Google Scholar

    [11]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [12]

    Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727Google Scholar

    [13]

    Ou Y X, Wang Z, Chang C S, Nair H P, Paik H J, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663Google Scholar

    [14]

    Emori S, Alaan U S, Gray M T, Sluka V, Chen Y, Kent A, Suzuki Y 2016 Phys. Rev. B 94 224423Google Scholar

    [15]

    Eom C B, Cava R J, Fleming R M, Phillips J M, Vandover R B, Marshall J H, Hsu J W P, Krajewski J J, Peck W F 1992 Science 258 1766Google Scholar

    [16]

    Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A, Beasley M R, 2012 Rev. Mod. Phys. 84 253Google Scholar

    [17]

    Wei J W, Zhong H, Liu J Z, Wang X, Meng F Q, Xu H J, Liu Y Z, Luo X, Zhang Q H, Guang Y, Feng J F, Zhang J, Yang L H, Ge C, Gu L, Jin K J, Yu G Q, Han X F 2021 Adv. Funct. Mater. 31 2100380Google Scholar

    [18]

    Zhou J, Shu X Y, Lin W N, Shao D F, Chen S H, Liu L, Yang P, Tsymbal E Y, Chen J S 2021 Adv. Mater. 33 2007114Google Scholar

    [19]

    Li S, Lao B, Lu Z X, Zheng X, Zhao K N, Gong L G, Tang T, Wu K Y, Li R W, Wang Z M 2023 Phys. Rev. Mater. 7 024418Google Scholar

    [20]

    Dagotto E 2005 Science 309 257Google Scholar

    [21]

    Ahn C, Cavalleri A, Georges A, Ismail-Beigi S, Millis A J, Triscone J-M 2021 Nat. Mater. 20 1462Google Scholar

    [22]

    Lu Z X, Yang Y J, Wen L J, Feng J T, Lao B, Zheng X, Li S, Zhao K N, Cao B S, Ren Z L, Song D S, Du H F, Guo Y Y, Zhong Z C, Hao X F, Wang Z M, Li R W 2022 NPJ Flex. Electron. 6 9Google Scholar

    [23]

    Wang Z M, Zhong Z C, MckeownWalker S, Ristic Z, Ma J Z, Bruno F Y, Ricco S, Sangiovanni G, Eres G, Plumb N C, Patthey L, Shi M, Mesot J, Baumberger F, Radovic M 2017 Nano Lett. 17 2561Google Scholar

    [24]

    Peng W, Park S Y, Roh C J, Mun J, Ju H, Kim J, Ko E K, Liang Z G, Hahn S, Zhang J F, Sanchez A M, Walker D, Hindmarsh S, Si L, Jo Y J, Jo Y, Kim T H, Kim C, Wang L F, Kim M Y, Lee J S, Noh T W, Lee D 2024 Nat. Phys. 20 450Google Scholar

    [25]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425Google Scholar

    [26]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [27]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [28]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [29]

    Zhu L, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308Google Scholar

    [30]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [31]

    Jin F, Gu M Q, Ma C, Guo E J, Zhu J, Qu L L, Zhang Z X, Zhang K X, Xu L Q, Chen B B, Chen F, Gao G Y, Rondinelli J M, Wu W B 2020 Nano Lett. 20 1131Google Scholar

    [32]

    Wang Z Z, Qi W H, Bi J C, Li X Y, Chen Y, Yang F, Cao Y W, Gu L, Zhang Q H, Wang H H, Zhang J D, Guo J D, Liu X R 2022 Chin. Phys. B 31 126801Google Scholar

  • 图 1  (111)-SRO/CoPt异质结构的表征结果 (a) SRO/CoPt薄膜异质结构示意图; (b) SRO薄膜表面的原位反射高能电子衍射(RHEED)图像及原子力显微镜(AFM)图像, 均方根粗糙度约为0.135 nm; (c) 在STO (111)衬底上生长的SRO薄膜的XRD $ \theta $-2$ \theta $ 扫描结果, 插图为SRO和STO的(222)峰附近范围的放大图; (d) SRO薄膜(132)峰附近的倒易空间映射结果; (e) CoPt的面外MOKE表征

    Figure 1.  SRO/CoPt heterostructure: (a) Schematic diagram of the SRO/CoPt thin film heterostructure; (b) in-situ reflection high-energy electron diffraction (RHEED) image and atomic force microscopy (AFM) image of the SRO surface, the root-mean-square roughness is about 0.135 nm; (c) XRD $ \theta $-2$ \theta $ scan results of the SRO film grown on the STO (111) substrate, the inset is an enlarged view of the region near the (222) peaks of SRO and STO; (d) X-ray reciprocal space mapping (RSM) results of the SRO film; (e) out-of-plane MOKE characterization of CoPt.

    图 2  SRO/CoPt样品在纵向场HL下的谐波霍尔电压测量 (a) 样品测量的示意图, 交流电流I沿x方向施加, 外加磁场HL沿x (纵向)方向施加; (b) 施加垂直于平面的变化磁场HZ测得的反常霍尔电阻RAHE; (c) I = 1.5 mA下, 一次和(d)二次谐波霍尔电压信号随纵向场HL变化的情况; (e) SOT有效场HDL随电流密度JSRO (分流至SRO的电流密度)的变化; (f) 室温下SRO/CoPt的面外SQUID测量, 由此得出饱和磁化强度Ms

    Figure 2.  Harmonic Hall voltage measurements of the SRO/CoPt sample under a longitudinal field HL. (a) Schematic diagram of the sample measurement. The AC current I is applied along the x-direction. The external magnetic field HL is applied along the x (longitudinal) direction. (b) Anomalous Hall resistance RAHE measured by applying a magnetic field HZ perpendicular to the plane. (c) First and (d) second harmonic Hall voltage signals as a function of the longitudinal field HL at I = 1.5 mA. (e) Variation of the SOT effective field HDL with the current density JSRO (current density shunted to SRO). (f) Out-of-plane SQUID measurement of SRO/CoPt at room temperature, from which the saturation magnetization Ms is obtained.

    图 3  SRO/CoPt样品在横向场HT下的谐波霍尔电压测量 (a) 样品测量的示意图, 交流电流I沿x方向施加, 外加磁场H沿y (横向)方向施加; (b) I = 2.5 mA下, 在横向磁场HT下测得的二次谐波霍尔电压信号; (c) SOT有效场HFL随电流密度JSRO (分流至SRO的电流密度)的变化

    Figure 3.  Harmonic Hall voltage measurements of the SRO/CoPt sample under a transverse field HT: (a) Schematic diagram of the sample measurement, the AC current I is applied along the x-direction, the external magnetic field H is applied along the y (transverse) direction; (b) second harmonic Hall voltage signal measured under the transverse magnetic field HT at I = 2.5 mA; (c) variation of the SOT effective field HFL with the current density JSRO (current density shunted to SRO).

    图 4  (111)-SRO/CoPt异质结构由自旋轨道力矩(SOT)驱动的垂直磁化翻转 (a)生长了电极的Hall bar的显微镜图像及磁矩翻转测量的几何图示, 脉冲电流Iwrite用于翻转磁化状态, 而直流恒定电流IDC用于读取(上图), Iwrite(±12 mA)和 Iread(200 μA)的序列图(下); (b) 样品在不同外加磁场Hx下, Iwrite驱动的磁化翻转, RH表示霍尔电阻的变化

    Figure 4.  Perpendicular magnetization switching driven by spin-orbit torque (SOT) in the [111]-SRO/CoPt sample: (a) Microscope image of the Hall bar with electrodes and a schematic diagram of the magnetization switching measurement geometry. Pulsed current Iwrite is used to switch the magnetization state, while DC constant current IDC is used to read (Top), sequence diagram of Iwrite (±12 mA) and Iread (200 μA) (Below); (b) the magnetization of the sample driven by Iwrite switching under different applied magnetic fields Hx, RH indicates the change in Hall resistance.

  • [1]

    Sasikanth M, Dmitri E N, Ian A Y 2018 Nat. Phys. 14 338Google Scholar

    [2]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Cengiz Onbaşlı M, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446Google Scholar

    [3]

    Manchon A, Železný J, M. Miron I, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [4]

    Miron I M, Garello K, Gaudin G, Zermatten P-J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [5]

    Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J, Yang S, Garello K, Zhang W 2021 IEEE T. Magn. 57 800439

    [6]

    Chen H, Yi D 2021 APL Mater. 9 060908Google Scholar

    [7]

    劳斌, 郑轩, 李晟, 汪志明 2023 物理学报 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [8]

    Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski, Kim Y B, Ralph D C, Eom C B 2018 Proc. Natl. Acad. Sci. 33 16186

    [9]

    Everhardt A S, DC M , Huang X, Sayed S, Gosavi T A, Tang Y, Lin C, Manipatruni S, Young I A, Datta S, Wang J, and Ramesh R 2019 Phys. Rev. Mater. 3 051201

    [10]

    Wang H L, Meng K Y, Zhang P X, Hou J T, Finley J, Han J H, Yang F Y, Liu L Q 2019 Appl. Phys. Lett. 114 232406Google Scholar

    [11]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [12]

    Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727Google Scholar

    [13]

    Ou Y X, Wang Z, Chang C S, Nair H P, Paik H J, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663Google Scholar

    [14]

    Emori S, Alaan U S, Gray M T, Sluka V, Chen Y, Kent A, Suzuki Y 2016 Phys. Rev. B 94 224423Google Scholar

    [15]

    Eom C B, Cava R J, Fleming R M, Phillips J M, Vandover R B, Marshall J H, Hsu J W P, Krajewski J J, Peck W F 1992 Science 258 1766Google Scholar

    [16]

    Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A, Beasley M R, 2012 Rev. Mod. Phys. 84 253Google Scholar

    [17]

    Wei J W, Zhong H, Liu J Z, Wang X, Meng F Q, Xu H J, Liu Y Z, Luo X, Zhang Q H, Guang Y, Feng J F, Zhang J, Yang L H, Ge C, Gu L, Jin K J, Yu G Q, Han X F 2021 Adv. Funct. Mater. 31 2100380Google Scholar

    [18]

    Zhou J, Shu X Y, Lin W N, Shao D F, Chen S H, Liu L, Yang P, Tsymbal E Y, Chen J S 2021 Adv. Mater. 33 2007114Google Scholar

    [19]

    Li S, Lao B, Lu Z X, Zheng X, Zhao K N, Gong L G, Tang T, Wu K Y, Li R W, Wang Z M 2023 Phys. Rev. Mater. 7 024418Google Scholar

    [20]

    Dagotto E 2005 Science 309 257Google Scholar

    [21]

    Ahn C, Cavalleri A, Georges A, Ismail-Beigi S, Millis A J, Triscone J-M 2021 Nat. Mater. 20 1462Google Scholar

    [22]

    Lu Z X, Yang Y J, Wen L J, Feng J T, Lao B, Zheng X, Li S, Zhao K N, Cao B S, Ren Z L, Song D S, Du H F, Guo Y Y, Zhong Z C, Hao X F, Wang Z M, Li R W 2022 NPJ Flex. Electron. 6 9Google Scholar

    [23]

    Wang Z M, Zhong Z C, MckeownWalker S, Ristic Z, Ma J Z, Bruno F Y, Ricco S, Sangiovanni G, Eres G, Plumb N C, Patthey L, Shi M, Mesot J, Baumberger F, Radovic M 2017 Nano Lett. 17 2561Google Scholar

    [24]

    Peng W, Park S Y, Roh C J, Mun J, Ju H, Kim J, Ko E K, Liang Z G, Hahn S, Zhang J F, Sanchez A M, Walker D, Hindmarsh S, Si L, Jo Y J, Jo Y, Kim T H, Kim C, Wang L F, Kim M Y, Lee J S, Noh T W, Lee D 2024 Nat. Phys. 20 450Google Scholar

    [25]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425Google Scholar

    [26]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [27]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [28]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [29]

    Zhu L, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308Google Scholar

    [30]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [31]

    Jin F, Gu M Q, Ma C, Guo E J, Zhu J, Qu L L, Zhang Z X, Zhang K X, Xu L Q, Chen B B, Chen F, Gao G Y, Rondinelli J M, Wu W B 2020 Nano Lett. 20 1131Google Scholar

    [32]

    Wang Z Z, Qi W H, Bi J C, Li X Y, Chen Y, Yang F, Cao Y W, Gu L, Zhang Q H, Wang H H, Zhang J D, Guo J D, Liu X R 2022 Chin. Phys. B 31 126801Google Scholar

  • [1] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] Liu Bing-Xin, Li Zong-Liang. CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [4] Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin. Field-like torque-induced tunable zero-field spin-torque nano-oscillator. Acta Physica Sinica, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [5] Jiao Chen, Jian Yue, Zhang Ai-Xia, Xue Ju-Kui. Excitation spectrum of tunable spin-orbit coupled Bose-Einstein condensates and its effective regulation. Acta Physica Sinica, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [6] Chen Sheng-Ru, Lin Shan, Hong Hai-Tao, Cui Ting, Jin Qiao, Wang Can, Jin Kui-Juan, Guo Er-Jia. Strong spin-lattice entanglement in cobaltites. Acta Physica Sinica, 2023, 72(9): 097502. doi: 10.7498/aps.72.20230206
    [7] Lao Bin, Zheng Xuan, Li Sheng, Wang Zhi-Ming. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides. Acta Physica Sinica, 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [8] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] Zhao Sheng-Sheng, Xu Yu-Zeng, Chen Jun-Fan, Zhang Li, Hou Guo-Fu, Zhang Xiao-Dan, Zhao Ying. Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts. Acta Physica Sinica, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [10] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [11] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [12] Song Jian-Jun, Bao Wen-Tao, Zhang Jing, Tang Zhao-Huan, Tan Kai-Zhou, Cui Wei, Hu Hui-Yong, Zhang He-Ming. Double ellipsoid model for conductivity effective mass along [110] orientation in (100) Si-based strained p-channel metal-oxide-semiconductor. Acta Physica Sinica, 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [13] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [14] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Wang Guan-Yu. Charge model of strained Si NMOSFET. Acta Physica Sinica, 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [15] Zhao Geng, Cheng Xiao-Man, Tian Hai-Jun, Du Bo-Qun, Liang Xiao-Yu, Wu Feng. The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene. Acta Physica Sinica, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [16] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [17] Tao Xiang-Ming, Xu Xian-Jun, Tan Ming-Qiu. . Acta Physica Sinica, 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [18] TAN MING-QIU, TAO XIANG-MING, HE JUN-HUI. FIRST-PRINCIPLES STUDY ON THE ELECTRONIC AND MAGNETIC PROPERTIES OF PEROVSKITE RUTHENATE SrRuO3. Acta Physica Sinica, 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
    [19] Hu Wei-Ying, Zeng Zhi, Zheng Qing-Qi, Huang Mei-Chun. . Acta Physica Sinica, 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
    [20] DU MAO-LU, LI ZHAO-MIN, KAN JIA-JUN. . Acta Physica Sinica, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
Metrics
  • Abstract views:  1906
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2024
  • Accepted Date:  27 March 2024
  • Available Online:  10 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回