Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crystal Orientation Regulation of Spin-Orbit Torque Efficiency and Magnetization Switching in SrRuO3 Thin Films

Zhao Kenan Li Sheng Lu Zengxing Lao Bin Zheng Xuan Li Run-Wei Wang Zhi-Ming

Citation:

Crystal Orientation Regulation of Spin-Orbit Torque Efficiency and Magnetization Switching in SrRuO3 Thin Films

Zhao Kenan, Li Sheng, Lu Zengxing, Lao Bin, Zheng Xuan, Li Run-Wei, Wang Zhi-Ming
PDF
Get Citation
  • Spintronic devices utilize the spin property of electrons for the storage, transmission, and processing of information, inherently possessing advantages such as low power consumption and non-volatility, thus attracting widespread attention from both academia and industry. Spin-orbit torque(SOT) is an efficient method of manipulating magnetic moments using electric current for writing, harnessing the spin-orbit coupling (SOC) effect within materials to achieve the mutual conversion between charge current and spin current. Enhancing the efficiency of charge-spin conversion is a critical issue in the field of spintronics. Strontium ruthenate (SRO) in transition metal oxides(TMO) has attracted significant attention as a spin source material in SOT devices due to its large and tunable charge-to-spin conversion efficiency. However, current research on SOT control in SRO primarily focuses on utilizing substrate strain, with limited exploration of other control methods. Crystal orientation can produce various novel physical properties by affecting material symmetry and electronic structure, is one of the important means to control the properties of TMO materials. Given the close correlation between the SOT effect and electronic structure as well as surface states, crystal orientation is expected to affect SOT properties by adjusting the electronic band structure of TMO. This work investigates the effect of crystal orientation on the SOT performance of SrRuO3 films and develops a novel approach for SOT control. (111)-oriented SRO/CoPt heterostructures and SOT devices were prepared using pulse laser deposition, magnetron sputtering, and micro-nano processing techniques. Through harmonic Hall voltage(HHV) measurements, we found that the SOT efficiency reached 0.39, and the spin Hall conductivity reached 2.19×105ħ/2e Ω−1 m−1, which were 86% and 369% higher than those of the (001) orientation, respectively. Furthermore, current-driven perpendicular magnetization switching was achieved in SrRuO3(111) devices at a low critical current density of 2.4×1010 A/m2, which was 37% lower than that of the (001) orientation. These results demonstrate that crystal orientation is an effective approach to significantly enhance the comprehensive performance of SrRuO3-based SOT devices, providing new insights for developing high-efficiency spintronic devices.
  • [1]

    Sasikanth M, Dmitri E. N, Ian A. Y 2018 Nat. Phys. 14 338

    [2]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Cengiz Onbaşlı M, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446

    [3]

    Manchon A, Železný J, M. Miron I, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004

    [4]

    Miron I M, Garello K, Gaudin G, Zermatten P-J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [5]

    Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J, Yang S, Garello K, Zhang W 2021 IEEE T. Magn. 57 800439

    [6]

    Chen H, Yi D 2021 APL Mater. 9 060908

    [7]

    Lao B, Zheng X, Li S, Wang Z 2023 Acta Phys. Sin. 72 097702

    [8]

    Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski, Kim Y B, Ralph D C, Eom C B 2018 Proc. Natl. Acad. Sci. 33 16186

    [9]

    Everhardt A S, DC M , Huang X, Sayed S, Gosavi T A, Tang Y, Lin C, Manipatruni S, Young I A, Datta S, Wang J, and Ramesh R 2019 Phys. Rev. Mater. 3 051201

    [10]

    Wang H, Meng K, Zhang P, Hou J T, Finley J, Han J, Yang F, Liu L 2019 Appl. Phys. Lett. 23 232406

    [11]

    Liu L, Qin Q, Lin W, Li C, Xie Q, He S, Shu X, Zhou C, Lim Z, Yu J, Lu W, Li M, Yan X, Pennycook S J, Chen J 2019 Nat. Nanotechnol. 14 939

    [12]

    Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727

    [13]

    Ou Y, Wang Z, Chang C S, Nair H P, Paik H, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663

    [14]

    Emori S, Alaan U S, Gray M T, Sluka V, Chen Y, Kent A, Suzuki Y 2016 Phys. Rev. B 94 224423

    [15]

    Eom C B, Cava R J, Fleming R M, Phillips J M, Vandover R B, Marshall J H, Hsu J W P, Krajewski J J, Peck W F 1992 Science 258 1766

    [16]

    Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A, Beasley M R, 2012 Rev. Mod. Phys. 84 253

    [17]

    Wei J, Zhong H, Liu J, Wang X, Meng F, Xu H, Liu Y, Luo X, Zhang Q, Guang Y, Feng J, Zhang J, Yang L, Ge C, Gu L, Jin K, Yu G, Han X 2021 Adv. Funct. Mater. 31 2100380

    [18]

    Zhou J, Shu X, Lin W, Shao D F, Chen S, Liu L, Yang P, Tsymbal E Y, Chen J 2021 Adv. Mater. 33 2007114

    [19]

    Li S, Lao B, Lu Z, Zheng Z, Zhao K, Gong L, Tang T, Wu K, Li R, Wang Z 2023 Phys. Rev. Mater. 7 024418

    [20]

    Dagotto E 2005 Science 309 257

    [21]

    Ahn C, Cavalleri A, Georges A, Ismail-Beigi S, Millis A J, Triscone J-M 2021 Nat. Mater. 20 1462

    [22]

    Lu Z, Yang Y, Wen L, Feng J, Lao B, Zheng X, Li S, Zhao K, Cao B, Ren Z, Song D, Du H, Guo Y, Zhong Z, Hao X, Wang Z, Li R 2022 npj Flex. Electron. 6 9

    [23]

    Wang Z, Zhong Z, MckeownWalker S, Ristic Z, Ma J-Z, Bruno F Y, Ricco S, Sangiovanni G, Eres G, Plumb N C, Patthey L, Shi M, Mesot J, Baumberger F, Radovic M 2017 Nano Lett. 17 2561

    [24]

    Peng W, Park S, Roh C, Mun J, Ju H, Kim J, Ko E K, Liang Z, Hahn S, Zhang J, Sanchez A M, Walker D, Hindmarsh S, Si L, Jo Y J, Jo Y, Kim T, Kim C, Wang L, Kim M, Lee J S, Noh T W, Lee D 2024 Nat. Phys.

    [25]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425

    [26]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240

    [27]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S, Ji Y, Wang K 2016 Sci. Rep. 6 20778

    [28]

    Liu L, Pai C-F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [29]

    Zhu L, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308

    [30]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587

    [31]

    Jin F, Gu M, Ma C, Guo E, Zhu J, Qu L, Zhang Z, Zhang K, Xu L, Chen B, Chen F, Gao G, Rondinelli J M, Wu W 2020 Nano Lett. 30 1131

    [32]

    Wang Z, Qi W, Bi J, Li X, Chen Y, Yang F, Cao Y, Gu L, Zhang Q, Wang H 2022 Chinese Phys. B 31 126801

  • [1] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, doi: 10.7498/aps.73.20231836
    [2] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231244
    [3] Liu Bing-Xin, Li Zong-Liang. CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica, doi: 10.7498/aps.73.20240246
    [4] Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin. Field-like torque-induced tunable zero-field spin-torque nano-oscillator. Acta Physica Sinica, doi: 10.7498/aps.72.20230628
    [5] Jiao Chen, Jian Yue, Zhang Ai-Xia, Xue Ju-Kui. Excitation spectrum of tunable spin-orbit coupled Bose-Einstein condensates and its effective regulation. Acta Physica Sinica, doi: 10.7498/aps.72.20222306
    [6] Chen Sheng-Ru, Lin Shan, Hong Hai-Tao, Cui Ting, Jin Qiao, Wang Can, Jin Kui-Juan, Guo Er-Jia. Strong spin-lattice entanglement in cobaltites. Acta Physica Sinica, doi: 10.7498/aps.72.20230206
    [7] Lao Bin, Zheng Xuan, Li Sheng, Wang Zhi-Ming. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides. Acta Physica Sinica, doi: 10.7498/aps.72.20222219
    [8] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, doi: 10.7498/aps.69.20200715
    [9] Zhao Sheng-Sheng, Xu Yu-Zeng, Chen Jun-Fan, Zhang Li, Hou Guo-Fu, Zhang Xiao-Dan, Zhao Ying. Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts. Acta Physica Sinica, doi: 10.7498/aps.68.20181991
    [10] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, doi: 10.7498/aps.67.20182007
    [11] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, doi: 10.7498/aps.67.20180216
    [12] Song Jian-Jun, Bao Wen-Tao, Zhang Jing, Tang Zhao-Huan, Tan Kai-Zhou, Cui Wei, Hu Hui-Yong, Zhang He-Ming. Double ellipsoid model for conductivity effective mass along [110] orientation in (100) Si-based strained p-channel metal-oxide-semiconductor. Acta Physica Sinica, doi: 10.7498/aps.65.018501
    [13] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, doi: 10.7498/aps.64.187103
    [14] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Wang Guan-Yu. Charge model of strained Si NMOSFET. Acta Physica Sinica, doi: 10.7498/aps.63.017101
    [15] Zhao Geng, Cheng Xiao-Man, Tian Hai-Jun, Du Bo-Qun, Liang Xiao-Yu, Wu Feng. The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene. Acta Physica Sinica, doi: 10.7498/aps.61.218502
    [16] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, doi: 10.7498/aps.54.1814
    [17] Tao Xiang-Ming, Xu Xian-Jun, Tan Ming-Qiu. . Acta Physica Sinica, doi: 10.7498/aps.51.2602
    [18] TAN MING-QIU, TAO XIANG-MING, HE JUN-HUI. FIRST-PRINCIPLES STUDY ON THE ELECTRONIC AND MAGNETIC PROPERTIES OF PEROVSKITE RUTHENATE SrRuO3. Acta Physica Sinica, doi: 10.7498/aps.50.2203
    [19] Hu Wei-Ying, Zeng Zhi, Zheng Qing-Qi, Huang Mei-Chun. . Acta Physica Sinica, doi: 10.7498/aps.44.273
    [20] DU MAO-LU, LI ZHAO-MIN, KAN JIA-JUN. . Acta Physica Sinica, doi: 10.7498/aps.44.1607
Metrics
  • Abstract views:  190
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Available Online:  10 April 2024

/

返回文章
返回