-
Silicon-based semiconductor quantum computing with spin as the encoding unit is compatible with traditional microelectronic processes, easy to expand, and can improve isotope purification and decoherence time, thus attracting much attention. There are fewer reports on the work related to undoped Si/SiGe heterostructures grown by molecular beam epitaxy than those on chemical vapor deposition. An undoped Si/SiGe heterostructure is grown by molecular beam epitaxy (see the attached figure below). The results from scanning transmission electron microscopy and energy-dispersive spectroscopy mapping show an atomic-scale interface with a characteristic length of 0.53 nm. The surface root-mean-square roughness measured by atomic force microscope is 0.44 nm. The X-ray diffraction data show that the Si quantum well is fully strained and the in-plane strain is 1.03%. In addition, the performance of the two-dimensional electron gas is evaluated by low-temperature Hall measurements, which are conducted in the Hall-bar shaped field-effect transistor. The peak mobility is 20.21×104 cm2·V–1·s–1 when the carrier density is about 6.265×1011 cm–2 at 250 mK. The percolation density is 1.465×1011 cm–2. The effective mass of the two-dimensional electron gas is approximately 0.19m0. The power exponential between carrier density and mobility at different gate voltages is 1.026, and the Dingle ratio of the two-dimensional electron gas is in a range of 7–12, indicating that the electrons are scattered by background impurities and semiconductor/oxide interfaces charges. The atomically sharp interface of Si/SiGe heterostructures created by molecular beam epitaxy is beneficial for studying the valley physics properties in silicon. The structural and transport characterizations in this paper lay the foundation for the optimization of Si-based semiconductor quantum dot quantum computing materials.
-
Keywords:
- Si/SiGe heterojunction /
- two-dimensional electronic gas /
- Hall mobility /
- Si-based quantum computing
[1] 王宁, 王保传, 郭国平 2022 物理学报 71 230301Google Scholar
Wang N, Wang B C, Guo G P 2022 Acta Phys. Sin. 71 230301Google Scholar
[2] Zhang J J, Li H O, Guo G P 2024 Sci. Sin. Inf. 54 102Google Scholar
[3] 张结印, 高飞, 张建军 2021 物理学报 70 217802Google Scholar
Zhang J Y, Gao F, Zhang J J 2021 Acta Phys. Sin. 70 217802Google Scholar
[4] Petta J, Johnson A, Taylor J, Laird E, Yacoby A, Lukin M, Marcus C, Hanson M, Gossard A 2005 Science 309 2180Google Scholar
[5] Yoneda J, Otsuka T, Nakajima T, Takakura T, Obata T, Pioro-Ladrière M, Lu H, Palmstrøm C J, Gossard A C, Tarucha S 2014 Phys. Rev. Lett. 113 267601Google Scholar
[6] Nadj-Perge S, Frolov S M, Bakkers E P, Kouwenhoven L P 2010 Nature 468 1084Google Scholar
[7] van den Berg J W G, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P A M, Frolov S M, Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806Google Scholar
[8] Li R, Hudson F E, Dzurak A S, Hamilton A R 2015 Nano Lett. 15 7314Google Scholar
[9] Borselli M G, Eng K, Croke E T, Maune B M, Huang B, Ross R S, Kiselev A A, Deelman P W, Alvarado-Rodriguez I, Schmitz A E, Sokolich M, Holabird K S, Hazard T M, Gyure M F, Hunter A T 2011 Appl. Phys. Lett. 99 063109Google Scholar
[10] Hendrickx N W, Lawrie W I L, Russ M, van Riggelen F, de Snoo S L, Schouten R N, Sammak A, Scappucci G, Veldhorst M 2021 Nature 591 580Google Scholar
[11] Madzik M T, Asaad S, Youssry A, Joecker B, Rudinger K M, Nielsen E, Young K C, Proctor T J, Baczewski A D, Laucht A, Schmitt V, Hudson F E, Itoh K M, Jakob A M, Johnson B C, Jamieson D N, Dzurak A S, Ferrie C, Blume-Kohout R, Morello A 2022 Nature 601 348Google Scholar
[12] 高飞, 冯琦, 王霆, 张建军 2020 物理学报 69 028102Google Scholar
Gao F, Feng Q, Wang T, Zhang J J 2020 Acta Phys. Sin. 69 028102Google Scholar
[13] Xu G, Gao F, Wang K, Zhang T, Liu H, Cao G, Wang T, Zhang J J, Jiang H W, Li H O, Guo G P 2020 Appl. Phys. Express 13 065002Google Scholar
[14] Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Wang T, Zhang J J, Guo G C, Guo G P 2020 New J. Phys. 22 083068Google Scholar
[15] Wang K, Xu G, Gao F, Liu H, Ma R L, Zhang X, Wang Z, Cao G, Wang T, Zhang J J, Culcer D, Hu X, Jiang H W, Li H O, Guo G C, Guo G P 2022 Nat. Commun. 13 206Google Scholar
[16] Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J J, Katsaros G 2018 Nat. Commun. 9 3902Google Scholar
[17] Stano P, Loss D 2022 Nat. Rev. Phys. 4 672Google Scholar
[18] Takeda K, Kamioka J, Otsuka T, Yoneda J, Nakajima T, Delbecq M R, Amaha S, Allison G, Kodera T, Oda S, Tarucha S 2016 Sci. Adv. 2 e1600694Google Scholar
[19] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M, Tarucha S 2018 Nat. Nanotechnol. 13 102Google Scholar
[20] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G, Vandersypen L M K 2022 Nature 601 343Google Scholar
[21] Takeda K, Noiri A, Nakajima T, Kobayashi T, Tarucha S 2022 Nature 608 682Google Scholar
[22] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E, Petta J R 2022 Sci. Adv. 8 5Google Scholar
[23] Philips S G J, Mądzik M T, Amitonov S V, de Snoo S L, Russ M, Kalhor N, Volk C, Lawrie W I L, Brousse D, Tryputen L, Wuetz B P, Sammak A, Veldhorst M, Scappucci G, Vandersypen L M K 2022 Nature 609 919Google Scholar
[24] Paquelet Wuetz B, Bavdaz P L, Yeoh L A, Schouten R, van der Does H, Tiggelman M, Sabbagh D, Sammak A, Almudever C G, Sebastiano F, Clarke J S, Veldhorst M, Scappucci G 2020 NPJ Quantum Inf. 6 43Google Scholar
[25] Mi X, Cady J V, Zajac D M, Stehlik J, Edge L F, Petta J R 2017 Appl. Phys. Lett. 110 043502Google Scholar
[26] Chung Y J, Villegas Rosales K A, Baldwin K W, Madathil P T, West K W, Shayegan M, Pfeiffer L N 2021 Nat. Mater. 20 632Google Scholar
[27] Weitz P, Haug R J, von Klitzing K, Schäffler F 1996 Surf. Sci. 361-362 542Google Scholar
[28] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nat. Phys. 3 41Google Scholar
[29] Zhang D D, Lu J, Liu Z, Wan F S, Liu X Q, Pang Y Q, Zhu Y P, Cheng B W, Zheng J, Zuo Y H, Xue C L 2022 Appl. Phys. Lett. 121 6
[30] Laroche D, Huang S H, Nielsen E, Chuang Y, Li J Y, Liu C W, Lu T M 2015 AIP Adv. 5 107106Google Scholar
[31] Tracy L A, Hwang E H, Eng K, Ten Eyck G A, Nordberg E P, Childs K, Carroll M S, Lilly M P, Das Sarma S 2009 Phys. Rev. B 79 235307Google Scholar
[32] Kim J S, Tyryshkin A M, Lyon S A 2017 Appl. Phys. Lett. 110 123505Google Scholar
[33] Coleridge P T 1990 Semicond. Sci. Technol. 5 961Google Scholar
[34] Mi X, Hazard T M, Payette C, Wang K, Zajac D M, Cady J V, Petta J R 2015 Phys. Rev. B 92 035304Google Scholar
[35] Wang K, Li H O, Luo G, Zhang X, Jing F M, Hu R Z, Zhou Y, Liu H, Wang G L, Cao G, Jiang H W, Guo G P 2020 Europhys. Lett. 130 27001Google Scholar
[36] Monroe D, Xie Y H, Fitzgerald E A, Silverman P J, Watson G P 1993 J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.—Process. Meas. Phenom. 11 1731
-
图 1 (a) 硅基Si/SiGe异质结结构示意图; (b) MBE 制备SiGe/Si QW/SiGe/Si 结构的 STEM-HAADF图; (c), (d) 量子阱附近Si, Ge元素的EDS谱; (e) SiGe/Si/SiGe 高倍STEM-HAADF图像; (f) Si 量子阱上界面的STEM-HAADF原子图像
Figure 1. (a) Schematic of Si/SiGe heterostructure on Si (001); (b) STEM-HAADF of SiGe/Si QW/SiGe/Si heterostructure grown by MBE; (c), (d) EDS of Si and Ge distribution around quantum well; (e) magnified STEM-HADDF of SiGe/Si/SiGe; (f) atomic-scale STEM-HADDF image of the Si/SiGe interface.
图 3 (a) 霍尔器件的光显图和截面示意图; (b) 载流子浓度和载流子迁移率随栅极电压变化的曲线; (c) 载流子迁移率与载流子浓度的对应关系曲线; (d) 纵向电导率随载流子浓度变化的关系(虚线是根据渗透理论拟合的曲线); (e) 栅极电压为2 V时的纵向电阻率和横向电阻率随磁场的变化
Figure 3. (a) Optical microscope diagram and cross-sectional schematic view of Hall device; (b) carrier density and mobility as a function of the gate voltage Vg; (c) density-dependent mobility; (d) density-dependent conductivity, the dashed line is a fit based on the percolation theory; (e) transverse Hall resistivity and longitudinal resistivity as a function of the magnetic field.
图 4 (a) 不同温度下SdH振荡曲线; (b) 不同温度下去除噪音的SdH振荡曲线; (c) Δρxx/Δρ0在不同磁场强度下随温度的变换曲线; (d) 不同载流子浓度下有效质量m*随磁场B的变化
Figure 4. (a) Longitudinal resistivity as a function of magnetic field for different temperatures; (b) oscillation amplitude of the longitudinal resistivity as a function of the magnetic field; (c) Δρxx/Δρ0 for different temperatures, different colors represent different magnetic fields from 0.55 T to 0.82 T, dashed lines are the fits for extracting effective mass; (d) effective mass as a function of the magnetic field at various densities.
图 5 (a) 不同载流子浓度下的Sdh振荡曲线; (b) 不同载流子浓度下$\ln \Big(\dfrac{\Delta \rho_{xx} {\rm sinh}(\alpha T_0)}{\alpha T_0}\Big) $随1/B的变化曲线; (c) 量子寿命τq, τt随着载流子浓度变化的曲线; (d) 丁格比(τq/τt)随载流子浓度的变化曲线
Figure 5. (a) Longitudinal resistivity as a function of magnetic field under various carrier densities; (b) the variation curve of $\ln \Big(\dfrac{\Delta \rho_{xx} {\rm sinh}(\alpha T_0)}{\alpha T_0}\Big) $ with 1/B under different carrier densities; (c) τq and τt at different carrier densities; (d) carrier density-dependent Dingle plot (τq/τt).
-
[1] 王宁, 王保传, 郭国平 2022 物理学报 71 230301Google Scholar
Wang N, Wang B C, Guo G P 2022 Acta Phys. Sin. 71 230301Google Scholar
[2] Zhang J J, Li H O, Guo G P 2024 Sci. Sin. Inf. 54 102Google Scholar
[3] 张结印, 高飞, 张建军 2021 物理学报 70 217802Google Scholar
Zhang J Y, Gao F, Zhang J J 2021 Acta Phys. Sin. 70 217802Google Scholar
[4] Petta J, Johnson A, Taylor J, Laird E, Yacoby A, Lukin M, Marcus C, Hanson M, Gossard A 2005 Science 309 2180Google Scholar
[5] Yoneda J, Otsuka T, Nakajima T, Takakura T, Obata T, Pioro-Ladrière M, Lu H, Palmstrøm C J, Gossard A C, Tarucha S 2014 Phys. Rev. Lett. 113 267601Google Scholar
[6] Nadj-Perge S, Frolov S M, Bakkers E P, Kouwenhoven L P 2010 Nature 468 1084Google Scholar
[7] van den Berg J W G, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P A M, Frolov S M, Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806Google Scholar
[8] Li R, Hudson F E, Dzurak A S, Hamilton A R 2015 Nano Lett. 15 7314Google Scholar
[9] Borselli M G, Eng K, Croke E T, Maune B M, Huang B, Ross R S, Kiselev A A, Deelman P W, Alvarado-Rodriguez I, Schmitz A E, Sokolich M, Holabird K S, Hazard T M, Gyure M F, Hunter A T 2011 Appl. Phys. Lett. 99 063109Google Scholar
[10] Hendrickx N W, Lawrie W I L, Russ M, van Riggelen F, de Snoo S L, Schouten R N, Sammak A, Scappucci G, Veldhorst M 2021 Nature 591 580Google Scholar
[11] Madzik M T, Asaad S, Youssry A, Joecker B, Rudinger K M, Nielsen E, Young K C, Proctor T J, Baczewski A D, Laucht A, Schmitt V, Hudson F E, Itoh K M, Jakob A M, Johnson B C, Jamieson D N, Dzurak A S, Ferrie C, Blume-Kohout R, Morello A 2022 Nature 601 348Google Scholar
[12] 高飞, 冯琦, 王霆, 张建军 2020 物理学报 69 028102Google Scholar
Gao F, Feng Q, Wang T, Zhang J J 2020 Acta Phys. Sin. 69 028102Google Scholar
[13] Xu G, Gao F, Wang K, Zhang T, Liu H, Cao G, Wang T, Zhang J J, Jiang H W, Li H O, Guo G P 2020 Appl. Phys. Express 13 065002Google Scholar
[14] Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Wang T, Zhang J J, Guo G C, Guo G P 2020 New J. Phys. 22 083068Google Scholar
[15] Wang K, Xu G, Gao F, Liu H, Ma R L, Zhang X, Wang Z, Cao G, Wang T, Zhang J J, Culcer D, Hu X, Jiang H W, Li H O, Guo G C, Guo G P 2022 Nat. Commun. 13 206Google Scholar
[16] Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J J, Katsaros G 2018 Nat. Commun. 9 3902Google Scholar
[17] Stano P, Loss D 2022 Nat. Rev. Phys. 4 672Google Scholar
[18] Takeda K, Kamioka J, Otsuka T, Yoneda J, Nakajima T, Delbecq M R, Amaha S, Allison G, Kodera T, Oda S, Tarucha S 2016 Sci. Adv. 2 e1600694Google Scholar
[19] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M, Tarucha S 2018 Nat. Nanotechnol. 13 102Google Scholar
[20] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G, Vandersypen L M K 2022 Nature 601 343Google Scholar
[21] Takeda K, Noiri A, Nakajima T, Kobayashi T, Tarucha S 2022 Nature 608 682Google Scholar
[22] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E, Petta J R 2022 Sci. Adv. 8 5Google Scholar
[23] Philips S G J, Mądzik M T, Amitonov S V, de Snoo S L, Russ M, Kalhor N, Volk C, Lawrie W I L, Brousse D, Tryputen L, Wuetz B P, Sammak A, Veldhorst M, Scappucci G, Vandersypen L M K 2022 Nature 609 919Google Scholar
[24] Paquelet Wuetz B, Bavdaz P L, Yeoh L A, Schouten R, van der Does H, Tiggelman M, Sabbagh D, Sammak A, Almudever C G, Sebastiano F, Clarke J S, Veldhorst M, Scappucci G 2020 NPJ Quantum Inf. 6 43Google Scholar
[25] Mi X, Cady J V, Zajac D M, Stehlik J, Edge L F, Petta J R 2017 Appl. Phys. Lett. 110 043502Google Scholar
[26] Chung Y J, Villegas Rosales K A, Baldwin K W, Madathil P T, West K W, Shayegan M, Pfeiffer L N 2021 Nat. Mater. 20 632Google Scholar
[27] Weitz P, Haug R J, von Klitzing K, Schäffler F 1996 Surf. Sci. 361-362 542Google Scholar
[28] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nat. Phys. 3 41Google Scholar
[29] Zhang D D, Lu J, Liu Z, Wan F S, Liu X Q, Pang Y Q, Zhu Y P, Cheng B W, Zheng J, Zuo Y H, Xue C L 2022 Appl. Phys. Lett. 121 6
[30] Laroche D, Huang S H, Nielsen E, Chuang Y, Li J Y, Liu C W, Lu T M 2015 AIP Adv. 5 107106Google Scholar
[31] Tracy L A, Hwang E H, Eng K, Ten Eyck G A, Nordberg E P, Childs K, Carroll M S, Lilly M P, Das Sarma S 2009 Phys. Rev. B 79 235307Google Scholar
[32] Kim J S, Tyryshkin A M, Lyon S A 2017 Appl. Phys. Lett. 110 123505Google Scholar
[33] Coleridge P T 1990 Semicond. Sci. Technol. 5 961Google Scholar
[34] Mi X, Hazard T M, Payette C, Wang K, Zajac D M, Cady J V, Petta J R 2015 Phys. Rev. B 92 035304Google Scholar
[35] Wang K, Li H O, Luo G, Zhang X, Jing F M, Hu R Z, Zhou Y, Liu H, Wang G L, Cao G, Jiang H W, Guo G P 2020 Europhys. Lett. 130 27001Google Scholar
[36] Monroe D, Xie Y H, Fitzgerald E A, Silverman P J, Watson G P 1993 J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.—Process. Meas. Phenom. 11 1731
Catalog
Metrics
- Abstract views: 2191
- PDF Downloads: 112
- Cited By: 0