Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Demonstration of wide-bandgap GaN-based heterojunction vertical Hall sensors for high-temperature magnetic field detection

Cao Ya-Qing Huang Huo-Lin Sun Zhong-Hao Li Fei-Yu Bai Hong-Liang Zhang Hui Sun Nan Yung C. Liang

Citation:

Demonstration of wide-bandgap GaN-based heterojunction vertical Hall sensors for high-temperature magnetic field detection

Cao Ya-Qing, Huang Huo-Lin, Sun Zhong-Hao, Li Fei-Yu, Bai Hong-Liang, Zhang Hui, Sun Nan, Yung C. Liang
PDF
HTML
Get Citation
  • Magnetic fields are generally sensed by a device that makes use of the Hall effect. Hall-effect sensors are widely used for proximity switching, positioning, speed detecting for the purpose of control and condition monitoring. Currently, the Hall sensor products are mainly based on the narrow-bandgap Si or GaAs semiconductor, and they are suitable for room temperature or low temperature environment, while the novel wide-bandgap GaN-based Hall sensors are more suitable for the application in various high-temperature environments. However, the spatial structure of the GaN-based sensor is mainly horizontal and hence it is only able to detect the magnetic field perpendicular to it. To detect the parallel field on the sensor surface, the vertical structure device is required despite encountering many difficulties in technology, for example reducing the vertical electric field in the two-dimensional electron gas (2-DEG) channel. The vertical Hall sensor has not been reported so far, so it is technically impossible to realize three-dimensional magnetic field detection on single chip. To address the mentioned issues, in this paper we propose a design of the vertical Hall sensor based on the wide-bandgap AlGaN/GaN heterojunction material, which adopts a shallow etching of 2-DEG channel barrier to form a locally trenched structure. The material parameters and physical models of the proposed device are first calibrated against real device test data, and then the key structural parameters such as device electrode spacing ratio, mesa width and sensing electrode length are optimized by using technology computer aided design, and the device characteristics are analyzed. Finally, the simulation results confirm that the proposed Hall sensor has a higher sensitivity of magnetic field detection and lower temperature drift coefficient ($\sim $600 ppm/K), and the device can work stably in a high-temperature (greater than 500 K) environment. Therefore, the vertical and horizontal devices can be fabricated simultaneously on the same wafer in the future, thus achieving a three-dimensional magnetic field detection in various high-temperature environments.
      Corresponding author: Huang Huo-Lin, hlhuang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51607022) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT17LK13).
    [1]

    Boero G, Demierre M, Besse P A, Popovic R S 2003 Sens. Actuator A: Phys. 106 314Google Scholar

    [2]

    Nama T, Gogoi A K, Tripathy P 2017 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) Ottawa, Canada, October 5−7, 2017 p208

    [3]

    Roumenin C, Dimitrov K, Ivanov A 2001 Sens. Actuator A: Phys. 92 119Google Scholar

    [4]

    Dimitrov K 2007 Measurement 40 816Google Scholar

    [5]

    黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar

    [6]

    Bilotti A, Monreal G, Vig R 1997 IEEE J. Solid-State Circuit. 32 829Google Scholar

    [7]

    Behet M, Bekaert J, de Boeck J, Borghs G 2000 Sens. Actuator A: Phys. 81 13Google Scholar

    [8]

    Kunets V P, Easwaran S, Black W T, Guzun D, Mazur Y I, Goel N, Mishima T D, Santos M B, Salamo G J 2009 IEEE Trans. Electron Dev. 56 683

    [9]

    Koide S, Takahashi H, Abderrahmane A, Shibasaki I, Sandhu A 2012 J. Phys.: Conf. Ser. 352 012009Google Scholar

    [10]

    Hassan A, Ali M, Savaria Y, Sawan M 2019 Microelectron. J. 84 129Google Scholar

    [11]

    Li L, Chen J, Gu X, Li X, Pu T, Ao J-P 2018 Superlattice Microst. 123 274Google Scholar

    [12]

    Alim M A, Rezazadeh A A, Gaquiere C, Crupi G 2019 Semicond. Sci. Technol. 34 035002Google Scholar

    [13]

    Dowling K M, Alpert H S, Yalamarthy A S, Satterthwaite P F, Kumar S, Köck H, Ausserlechner U, Senesky D G 2019 IEEE Sens. Lett. 3 2500904Google Scholar

    [14]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [15]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334Google Scholar

    [16]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [17]

    Abderrahmane A, Koide S, Sato S I, Ohshima T, Sandhu A, Okada H 2012 IEEE Trans. Magn. 48 4421Google Scholar

    [18]

    Nifa I, Leroux C, Torres A, Charles M, Blachier D, Reimbold G, Ghibaudo G, Bano E 2017 Microelectron. Eng. 178 128Google Scholar

    [19]

    White T P, Shetty S, Ware M E, Mantooth H A, Salamo G J 2018 IEEE Sens. J. 18 2944Google Scholar

    [20]

    Abderrahmane A, Tashiro T, Takahashi H, Ko P J, Okada H, Sato S, Ohshima T, Sandhu A 2014 Appl. Phys. Lett. 104 023508Google Scholar

    [21]

    Heidari H, Bonizzoni E, Gatti U, Maloberti F, Dahiya R 2016 IEEE Sens. J. 16 8736Google Scholar

    [22]

    Kaufmann T, Vecchi M C, Ruther P, Paul O 2012 Sensor. Actuat. A: Phys. 178 1Google Scholar

    [23]

    黄杨, 徐跃, 郭宇锋 2015 半导体学报 36 124006

    Huang Y, Xu Y, Guo Y 2015 J. Semicond. 36 124006

    [24]

    Popovic R S 1984 IEEE Electron Dev. Lett. 5 357Google Scholar

    [25]

    Pascal J, Hebrard L, Kammerer J B, Frick V, Blonde J P 2007 IEEE Sensors 2007 Conference Atlanta, GA, USA, October 28–31, 2007 p1480

    [26]

    Popovic R S 2003 Hall Effect Devices (Vol. 2) (London: Institute of Physics Publishing) pp179−242

    [27]

    Allegretto W, Nathan A, Baltes H 1991 IEEE Trans. Comput.: Aided Des. Integr. Circuits Syst. 10 501Google Scholar

    [28]

    Riccobene C, Gartner K, Wachutka G, Baltes H, Fichtner W 1994 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 11−14, 1994 p727

    [29]

    Riccobene C, Wachutka G, Burgler J, Baltes H 1994 IEEE Trans. Electron Dev. 41 32

    [30]

    Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D, Ruden P P 2001 IEEE Trans. Electron Dev. 48 535Google Scholar

    [31]

    Anderson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R, Kub F J 2010 J. Electron. Mater. 39 478Google Scholar

    [32]

    Consejo C, Contreras S, Konczewicz L, Lorenzini P, Cordier Y, Skierbiszewski C, Robert J L 2005 Phys. Stat. Sol. (c) 2 1438Google Scholar

    [33]

    Roumenin C S, Nikolov D, Ivanov A 2004 Sensor. Actuat. A: Phys. 115 303Google Scholar

    [34]

    Zhao X, Bai Y, Deng Q, Ai C, Yang X, Wen D 2017 IEEE Sens. J. 17 5849Google Scholar

    [35]

    Kejik P, Schurig E, Bergsma F, Popovic R S 2005 The 13th International Conference on Solid-State Sensors Seoul, Korea, June 5–9, 2005 p317

    [36]

    Yamamura T, Nakamura D, Higashiwaki M, Matsui T, Sandhu A 2006 J. Appl. Phys. 99 08B302

  • 图 1  基于GaN基异质结结构的垂直型霍尔传感器结构 (a)剖面图; (b)俯视图

    Figure 1.  Schematic diagram of GaN-based vertical Hall sensor: (a) Sectional and (b) top views.

    图 2  器件仿真数据与实验转移特性结果进行对比的器件参数校准过程[31]

    Figure 2.  Comparisons of simulated IDS-VGS characteristics of the Hall sensor with the experimental data.

    图 3  2-DEG沟道界面下方电子浓度分布与势垒层剩余厚度的关系

    Figure 3.  Profiles of 2-DEG concentration vs. AlGaN barrier thickness.

    图 4  霍尔电压(或2-DEG电子浓度)与势垒层剩余厚度的关系

    Figure 4.  Hall voltage (or 2-DEG concentration) vs. AlGaN barrier thickness.

    图 5  d = 7 nm时, 传感器电流密度空间分布对比 (a)无外加磁场; (b)外加磁场B = 1 T

    Figure 5.  Comparisons of current density distribution in vertical Hall sensor with d = 7 nm under the conditions of (a) B = 0 and (b) B = 1 T.

    图 6  电流相关敏感度SIL2/L1比值的关系

    Figure 6.  Current-related sensitivity as a function of the ratio of L2/L1.

    图 7  电流相关敏感度SI(或输入电阻Rin)与感测电极长度l2的关系

    Figure 7.  Current-related sensitivity and input resistance as a function of the l2.

    图 8  电流相关敏感度(或输入电阻)与器件宽度w的关系

    Figure 8.  Current-related sensitivity and input resistance as a function of the w.

    图 9  器件输出电压随磁场和工作温度的变化

    Figure 9.  Temperature dependence of output Hall voltage as a function of magnetic induction.

    图 10  电流相关敏感度随工作温度的变化

    Figure 10.  Current-related sensitivity as a function of temperature.

    表 1  仿真中所用的典型器件物理参数

    Table 1.  Summary of physical parameters adopted in the simulations.

    物理参数单位GaNAlN
    禁带宽度 EgeV3.46.2
    电子亲和能χV3.41.9
    相对介电常数$\epsilon $9.48.8
    迁移率 μcm2/(V·s)1310300
    电子饱和速率 vsatcm/s1.8 × 1071.3 × 107
    电子发射截面 σ0ncm21.0 × 10–151.0 × 10–15
    导带状态密度 Nccm–32.7 × 10184.1 × 1018
    价带状态密度 Nvcm–32.5 × 10192.8 × 1020
    热导率 κW/(cm·K)1.32.9
    DownLoad: CSV

    表 2  基于不同材料的霍尔传感器关键性能指标对比

    Table 2.  Comparisons of key performances of Hall sensors based on various materials.

    器件类别工作温度/K温漂系数ST/ppm·K–1灵敏度SI/V·(A·T)–1
    Si基垂直型[33]T < 350$\sim $100041 (x方向)
    Si基垂直型[34]T < 350454577.5 (x方向)
    Si基垂直型[35]T < 3501500N/A
    InAs/AlGaSb水平型[7]T < 4001710250
    InAs/AlGaSb水平型[7]T < RT2690302
    AlGaN/GaN水平型[19]T > 400$\sim $1000113
    AlGaN/GaN水平型[36]T > 40082046
    AlGaN/GaN垂直型(本文)T > 500$\sim $60075.7 (w = 3 μm)
    113.7 (w = 2 μm)
    DownLoad: CSV
  • [1]

    Boero G, Demierre M, Besse P A, Popovic R S 2003 Sens. Actuator A: Phys. 106 314Google Scholar

    [2]

    Nama T, Gogoi A K, Tripathy P 2017 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) Ottawa, Canada, October 5−7, 2017 p208

    [3]

    Roumenin C, Dimitrov K, Ivanov A 2001 Sens. Actuator A: Phys. 92 119Google Scholar

    [4]

    Dimitrov K 2007 Measurement 40 816Google Scholar

    [5]

    黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar

    [6]

    Bilotti A, Monreal G, Vig R 1997 IEEE J. Solid-State Circuit. 32 829Google Scholar

    [7]

    Behet M, Bekaert J, de Boeck J, Borghs G 2000 Sens. Actuator A: Phys. 81 13Google Scholar

    [8]

    Kunets V P, Easwaran S, Black W T, Guzun D, Mazur Y I, Goel N, Mishima T D, Santos M B, Salamo G J 2009 IEEE Trans. Electron Dev. 56 683

    [9]

    Koide S, Takahashi H, Abderrahmane A, Shibasaki I, Sandhu A 2012 J. Phys.: Conf. Ser. 352 012009Google Scholar

    [10]

    Hassan A, Ali M, Savaria Y, Sawan M 2019 Microelectron. J. 84 129Google Scholar

    [11]

    Li L, Chen J, Gu X, Li X, Pu T, Ao J-P 2018 Superlattice Microst. 123 274Google Scholar

    [12]

    Alim M A, Rezazadeh A A, Gaquiere C, Crupi G 2019 Semicond. Sci. Technol. 34 035002Google Scholar

    [13]

    Dowling K M, Alpert H S, Yalamarthy A S, Satterthwaite P F, Kumar S, Köck H, Ausserlechner U, Senesky D G 2019 IEEE Sens. Lett. 3 2500904Google Scholar

    [14]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [15]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334Google Scholar

    [16]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [17]

    Abderrahmane A, Koide S, Sato S I, Ohshima T, Sandhu A, Okada H 2012 IEEE Trans. Magn. 48 4421Google Scholar

    [18]

    Nifa I, Leroux C, Torres A, Charles M, Blachier D, Reimbold G, Ghibaudo G, Bano E 2017 Microelectron. Eng. 178 128Google Scholar

    [19]

    White T P, Shetty S, Ware M E, Mantooth H A, Salamo G J 2018 IEEE Sens. J. 18 2944Google Scholar

    [20]

    Abderrahmane A, Tashiro T, Takahashi H, Ko P J, Okada H, Sato S, Ohshima T, Sandhu A 2014 Appl. Phys. Lett. 104 023508Google Scholar

    [21]

    Heidari H, Bonizzoni E, Gatti U, Maloberti F, Dahiya R 2016 IEEE Sens. J. 16 8736Google Scholar

    [22]

    Kaufmann T, Vecchi M C, Ruther P, Paul O 2012 Sensor. Actuat. A: Phys. 178 1Google Scholar

    [23]

    黄杨, 徐跃, 郭宇锋 2015 半导体学报 36 124006

    Huang Y, Xu Y, Guo Y 2015 J. Semicond. 36 124006

    [24]

    Popovic R S 1984 IEEE Electron Dev. Lett. 5 357Google Scholar

    [25]

    Pascal J, Hebrard L, Kammerer J B, Frick V, Blonde J P 2007 IEEE Sensors 2007 Conference Atlanta, GA, USA, October 28–31, 2007 p1480

    [26]

    Popovic R S 2003 Hall Effect Devices (Vol. 2) (London: Institute of Physics Publishing) pp179−242

    [27]

    Allegretto W, Nathan A, Baltes H 1991 IEEE Trans. Comput.: Aided Des. Integr. Circuits Syst. 10 501Google Scholar

    [28]

    Riccobene C, Gartner K, Wachutka G, Baltes H, Fichtner W 1994 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 11−14, 1994 p727

    [29]

    Riccobene C, Wachutka G, Burgler J, Baltes H 1994 IEEE Trans. Electron Dev. 41 32

    [30]

    Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D, Ruden P P 2001 IEEE Trans. Electron Dev. 48 535Google Scholar

    [31]

    Anderson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R, Kub F J 2010 J. Electron. Mater. 39 478Google Scholar

    [32]

    Consejo C, Contreras S, Konczewicz L, Lorenzini P, Cordier Y, Skierbiszewski C, Robert J L 2005 Phys. Stat. Sol. (c) 2 1438Google Scholar

    [33]

    Roumenin C S, Nikolov D, Ivanov A 2004 Sensor. Actuat. A: Phys. 115 303Google Scholar

    [34]

    Zhao X, Bai Y, Deng Q, Ai C, Yang X, Wen D 2017 IEEE Sens. J. 17 5849Google Scholar

    [35]

    Kejik P, Schurig E, Bergsma F, Popovic R S 2005 The 13th International Conference on Solid-State Sensors Seoul, Korea, June 5–9, 2005 p317

    [36]

    Yamamura T, Nakamura D, Higashiwaki M, Matsui T, Sandhu A 2006 J. Appl. Phys. 99 08B302

  • [1] Geng Xin, Zhang Jie-Yin, Lu Wen-Long, Ming Ming, Liu Fang-Ze, Fu Bin-Xiao, Chu Yi-Xin, Yan Mou-Hui, Wang Bao-Chuan, Zhang Xin-Ding, Guo Guo-Ping, Zhang Jian-Jun. Epitaxy and characterization of undoped Si/SiGe heterojunctions. Acta Physica Sinica, 2024, 73(11): 117302. doi: 10.7498/aps.73.20240310
    [2] Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing. Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient. Acta Physica Sinica, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [3] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [4] Ran Feng, Liang Yan, Jiandi Zhang. Quasi-two-dimensional superconductivity at oxide heterostructures. Acta Physica Sinica, 2023, 72(9): 097401. doi: 10.7498/aps.72.20230044
    [5] Zhang Xue-Bing, Liu Nai-Zhang, Yao Ruo-He. Polar optical phonon scattering of two-dimensional electron gas in AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [6] Ma Song-Song, Shu Tian-Yu, Zhu Jia-Qi, Li Kai, Wu Hui-Zhen. Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas. Acta Physica Sinica, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [7] Li Qun, Chen Qian, Chong Jing. Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [8] Cao Jiang-Wei, Wang Rui, Wang Ying, Bai Jian-Min, Wei Fu-Lin. Measurement and study of low-frequency noise in TMR magnetic field sensor. Acta Physica Sinica, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [9] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [10] Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong. Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure. Acta Physica Sinica, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [11] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [12] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [13] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [14] Ni Jin-Yu, Hao Yue, Zhang Jin-Cheng, Duan Huan-Tao, Zhang Jin-Feng. Influence of high-temperature AlN interlayer on the electrical properties of AlGaN/GaN heterostructure and HEMTs. Acta Physica Sinica, 2009, 58(7): 4925-4930. doi: 10.7498/aps.58.4925
    [15] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Liu Jian, Liu Xin-Yu, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [16] Li Dong-Lin, Zeng Yi-Ping. Theoretical analysis about the influence of channel layer thickness on the 2D electron gas and its distribution in InP-based high-electron-mobility transistors. Acta Physica Sinica, 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
    [17] Zhou Wen-Zheng, Yao Wei, Zhu Bo, Qiu Zhi-Jun, Guo Shao-Ling, Lin Tie, Cui Li-Jie, Gui Yong-Sheng, Chu Jun-Hao. Magneto-transport characteristics of two-dimensional electron gas for Si δ-doped InAlAs/InGaAs single quantum well. Acta Physica Sinica, 2006, 55(4): 2044-2048. doi: 10.7498/aps.55.2044
    [18] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [19] Kong Yue-Chan, Zheng You-Dou, Chu Rong-Ming, Gu Shu-Lin. Influnce of Al-content on the property of the two-dimensional electron gases in AlxGa1-xN/GaN heterostructures. Acta Physica Sinica, 2003, 52(7): 1756-1760. doi: 10.7498/aps.52.1756
    [20] JIANG CHUN-PING, GUI YONG-SHENG, ZHENG GUO-ZHEN, MA ZHI-XUN, LI BIAO, GUO SHAO-L ING, CHU JUN-HAO. STUDY ON TRANSPORT PROPERTIES OF TWO-DIMENSIONAL ELECTRON GASES IN n-Hg0.80 Mg0.20Te INTERFACE ACCUMULATION LAYER. Acta Physica Sinica, 2000, 49(9): 1804-1808. doi: 10.7498/aps.49.1804
Metrics
  • Abstract views:  9624
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2019
  • Accepted Date:  23 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回