Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field

Zhao Chen-Rui Yang Qian-Qian Jiao Ju Tang Zheng-Hua Qin Ming-Hui

Citation:

Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field

Zhao Chen-Rui, Yang Qian-Qian, Jiao Ju, Tang Zheng-Hua, Qin Ming-Hui
PDF
Get Citation
  • Ferrimagnetic materials exhibit ultrafast dynamics similar to those of antiferromagnetic materials near the angular momentum compensation point, where a non-zero net spin density is maintained. This unique feature allows their magnetic structures to be detected and manipulated using traditional magnetic techniques, positioning ferrimagnetic materials as promising candidates for next-generation high-performance spintronic devices. However, effectively controlling the dynamics of ferrimagnetic domain walls remains a significant challenge in current spintronics research.
    In this work, based on the classic Heisenberg spin model, we employ Landau-Lifshitz-Gilbert (LLG) simulations to investigate the dynamic behavior of ferrimagnetic domain walls driven by sinusoidal and square wave periodic magnetic fields. The results reveal that these two types of oscillating magnetic fields induce distinct domain wall motion modes. Specifically, the domain wall surface, which has non-zero net spin angular momentum, oscillates in response to the external magnetic field. We find that the domain wall velocity decreases as the net spin angular momentum increases. Moreover, the displacement of the ferrimagnetic domain wall driven by a sinusoidal magnetic field increases monotonically with time, while the displacement driven by a square wave magnetic field follows a more tortuous trajectory over time. Under high-frequency field conditions, the domain wall displacement shows more pronounced linear growth, and the domain wall surface rotates linearly with time.This study also explores how material parameters, such as net spin angular momentum, anisotropy, and the damping coefficient, influence domain wall dynamics. Specifically, increasing the anisotropy parameter (dz) or the damping coefficient (α) results in a reduction of domain wall velocity. Furthermore, the study demonstrates that, compared to square wave magnetic fields, sinusoidal magnetic fields drive the domain wall more efficiently, leading to faster domain wall motion. By adjusting the frequency and waveform of the periodic magnetic field, the movement of ferrimagnetic domain walls can be precisely controlled, enabling fine-tuned regulation of both domain wall velocity and position.
    Our findings show that sinusoidal magnetic fields, even at the same intensity, offer higher driving efficiency. The underlying physical mechanisms are discussed in detail, providing valuable insights that can guide the design and experimental development of domain wall-based spintronic devices.
  • [1]

    . Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711

    [2]

    . Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H, Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301

    [3]

    . Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414

    [4]

    . Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187

    [5]

    . Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403

    [6]

    . Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154

    [7]

    . Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438

    [8]

    . Sun C, Yang H, Jalil M 2020 Phys. Rev. B 102 134420

    [9]

    . Zhang Y J, Li G J, Liu E K, Chen J L, Wang W H, Wu G H, Hu J X 2013 Acta Phys. Sin. 62 037501(in Chinese)[张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄 2013 物理学报 62 037501]

    [10]

    . Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H,Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301

    [11]

    . Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1

    [12]

    . Jin M S, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431

    [13]

    . Jing K Y, Gong X, Wang X R 2022 Phys. Rev. B 106 174429

    [14]

    . Haltz E, Krishnia S, Berges L, Mougin A, Sampaio J 2021 Phys. Rev. B 103 014444

    [15]

    . Tono T, Taniguchi T, Kim K J, Moriyama T, Tsukamoto A, Ono T 2015 Appl. Phys. Express 8 073001

    [16]

    . Luo C, Chen K, Ukleev V, Wintz S, Weigand M, Abrudan R M, Prokeš K, Radu F 2023 Comm. Phys. 6 218

    [17]

    . Nishimura T, Kim D H, Hirata Y,Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Shiota Y, Moriyama T, Ono T 2018 Appl. Phys. Lett. 112 172403

    [18]

    . Chen J, Dong S 2021 Phys. Rev. Lett. 126 117603

    [19]

    . Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(R)

    [20]

    . Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T, Pizzini S 2021 Nano Lett. 21 2580

    [21]

    . Caretta L, Avc C O 2024 APL Mater. 12 011106

    [22]

    . Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S, Vila L 2019 Nano Lett. 19 8716

    [23]

    . Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M, Gambardella P 2022 Nat. Nanotechnol. 17 834

    [24]

    . Haltz E, Sampaio J, Krishnia S and Berges L, Weil R, Mougin A 2020 Sci. Rep. 10 16292

    [25]

    . Kim D H, Kim D H, Kim K J, Moon K W, Yang S M, Lee K J, Kim S K 2020 J. Magn. Magn. Mater. 514 167237

    [26]

    . Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622

    [27]

    . Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604

    [28]

    . Donges A, Grimm N, Jakobs F, Selzer S, Ritzmann U, Atxitia U, Nowak U 2020 Phys. Rev. Res. 2 013293

    [29]

    . Yan Z R, Chen Z Y, Qin M H, Lu X B, Gao X S, Liu J M, 2018 Phys. Rev. B 97 054308

    [30]

    . Yurlov V V, Zvezdin K A, Skirdkov P N, Zvezdin A K 2021 Phys. Rev. B 103 134442

    [31]

    . Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640

    [32]

    . Balan C, Garcia J P, Fassatoui A, Vogel J, Chaves D D S, Bonfim M, Rueff J P, Ranno L, Pizzini S 2022 Phys. Rev. Applied 18 034065

    [33]

    . Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M, 2020 Phys. Rev. Res. 2 013166

    [34]

    . Liu T T, Liu Y, Liu, Y H, Tian G, Qin M H 2024 J. Phys. D Appl. Phys. 57 335002

    [35]

    . Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Metals 41 3815

    [36]

    . Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502 (in Chinese)[赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报72 208502]

    [37]

    . Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M, 2018 New J. Phys. 20 063003

    [38]

    . Bassirian P, Hesjedal T, Parkin S S P, Litzius K 2022 APL Materials 10 101107

    [39]

    . Zhang X C, Xia J, Tretiakov O A, Zhao G P, Zhou Y, Mochizuki M, Liu X X, Ezawa M 2023 Phys. Rev. B 108 064410

    [40]

    . Consolo G, Lopez-Diaz L, Torres L, Azzerboni B 2007 IEEE T. Magn. 43 2974

  • [1] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, doi: 10.7498/aps.73.20231589
    [2] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231244
    [3] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, doi: 10.7498/aps.73.20240129
    [4] Zhao Chen-Rui, Wei Yun-Xin, Liu Ting-Ting, Qin Ming-Hui. Dynamics of ferrimagnetic domain walls driven by sinusoidal microwave magnetic field. Acta Physica Sinica, doi: 10.7498/aps.72.20230913
    [5] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.71.20220301
    [6] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.70.20202146
    [7] Niu Peng-Bin, Luo Hong-Gang. Interplay between Majorana fermion and impurity in thermal-driven transport model. Acta Physica Sinica, doi: 10.7498/aps.70.20202241
    [8] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, doi: 10.7498/aps.69.20200007
    [9] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, doi: 10.7498/aps.67.20180894
    [10] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, doi: 10.7498/aps.67.20180216
    [11] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, doi: 10.7498/aps.67.20180554
    [12] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, doi: 10.7498/aps.66.027501
    [13] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, doi: 10.7498/aps.65.118105
    [14] Gu Xiao-Fang, Qian Xuan, Ji Yang, Chen Lin, Zhao Jian-Hua. Observation of current-induced polarization in (Ga,Mn)As via magneto-optic Kerr measurement. Acta Physica Sinica, doi: 10.7498/aps.61.037801
    [15] Xu Jian-Wei, Wang Shun-Jin. Relativistic mean field theory of electron and first, second-order Rashba effects. Acta Physica Sinica, doi: 10.7498/aps.58.4878
    [16] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, doi: 10.7498/aps.56.4785
    [17] Ren Min, Zhang Lei, Hu Jiu-Ning, Deng Ning, Chen Pei-Yi. A macroscopic model of current-induced magnetization switching based on magnetic dynamic equation. Acta Physica Sinica, doi: 10.7498/aps.56.2863
    [18] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, doi: 10.7498/aps.53.3814
    [19] Sun Feng-Wei, Deng Li, Shou Qian, Liu Lu-Ning, Wen Jin-Hui, Lai Tian-Shu, Lin Wei-Zhu. Femtosecond spectral studies of electron spin injection and relaxation in AlGaAs / GaAs MQW. Acta Physica Sinica, doi: 10.7498/aps.53.3196
    [20] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, doi: 10.7498/aps.52.2569
Metrics
  • Abstract views:  42
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  23 December 2024

/

返回文章
返回