Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model

Li Kai Liu Jun Liu Wei-Qiang

Citation:

Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model

Li Kai, Liu Jun, Liu Wei-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • There has been a resurgence in the field of magnetohydrodynamic (MHD) flow control in the past 20 years. An increasing demand for sustained hypersonic flight and rapid access to space, along with numerous mechanical and material advances in flight-weight MHD technologies, has aroused renewed interest in this subject area. As a novel application of MHD flow control in the thermal protection field, MHD heat shield system has been proved to be of great intrinsic value by lots of researchers in recent years. Although its theoretical feasibility has been validated, there are many problems that remain to be further investigated. Among those problems, the Hall effect is a remarkable one that may affect the effectiveness of MHD flow control. Considering the fact that it is not sufficient to evaluate the Hall effect by merely using the chemical reaction model implemented in the nonequilibrium flow simulation to calculate the Hall parameter, a parametric study is conducted under the assumption of simplified uniform Hall parameter. First, coupling numerical methods are constructed and validated to solve the thermochemical nonequilibrium flow field and the electro-magnetic field. Second, a series of numerical simulations of the MHD head shield system is conducted with different magnitudes of Hall parameter under two magnetic induction intensities (B0=0.2 T, 0.5 T). Finally, the influence of Hall effect on the performance of MHD heat shield system is analyzed. Results indicate that Hall effect is closely related to the wall conductivity. If the vehicle surface is regarded as an insulating wall, the heat flux variation is co-determined by varying the Lorentz forces within the boundary layer and the shock-control effect. Compared with the one neglecting the Hall effect, the heat flux with Hall effect is slightly mitigated as the increase of Lorentz forces in the boundary layer dominates when the stagnation magnetic induction intensity B0 equals 0.2 T. However, the heat flux is increased when B0 equals 0.5 T, because the decrease of shock stand-off distance dominates which increases the gas temperature outside the boundary layer. Moreover, in this case the larger the Hall parameter, the higher the heat flux will be. As for the conductive wall, the performance of MHD heat shield system becomes worse with the increase of Hall parameter, and while it is equal to or higher than 5.0, this system loses its effectiveness.
      Corresponding author: Liu Jun, liujun@nudt.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ2002) and the National Natural Science Foundation of China (Grant No. 90916018).
    [1]

    Zhu Y J, Jiang Y S, Hua H Q, Zhang C H, Xin C W 2014Acta Phys.Sin. 63 244101(in Chinese)[朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟2014物理学报63 244101]

    [2]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015Acta Phys.Sin. 64 015101(in Chinese)[赵光银, 李应红, 梁华, 化为卓, 韩孟虎2015物理学报64 015101]

    [3]

    Tian Z Y, Zhang K P, Pan S, Li H 2008Chin.Quar.Mechan. 29 72(in Chinese)[田正雨, 张康平, 潘沙, 李桦2008力学季刊29 72]

    [4]

    Zhang S H, Zhao H, Du A M, Cao X 2013Sci.China:Tech.Sci. 43 1242(in Chinese)[张绍华, 赵华, 杜爱民, 曹馨2013中国科学:技术科学43 1242]

    [5]

    Bityurin V A, Bocharov A N 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-1033

    [6]

    Bisek N J, Gosse R, Poggie J 2013J.Spacecraft Rockets 50 927

    [7]

    Yoshino T, Fujino T, Ishikawa M 201041st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010

    [8]

    Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009J.Spacecraft Rockets 46 274

    [9]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 201218th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24-282012, AIAA 2012-5804

    [10]

    Otsu H, Konigorski D, Abe T 2010AIAA J. 48 2177

    [11]

    Matsushita K 2003Ph.D.Dissertation(Tokyo:University of Tokyo)

    [12]

    Otsu H, Matsushita K, Konigorski D, Funaki I, Abe T 2004AIAA 2004-2167

    [13]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007J.Spacecraft Rockets 44 625

    [14]

    Matsuda A, Kawamura M, Takizawa Y, Otsu H, Konigorski D, Sato S, Abek T 200745th AIAA Aerospace Sciences Meeting and Exhibit Reno Nevada, January 8-112007

    [15]

    LH Y, Lee C H 2010Chin.Sci.Bull. 55 1182(in Chinese)[吕浩宇, 李椿萱2010科学通报55 1182]

    [16]

    Li K, Liu W Q 2016Acta Phys.Sin. 65 064701(in Chinese)[李开, 刘伟强2016物理学报65 064701]

    [17]

    Liu J 2004Ph.D.Dissertation(Changsha:National University of Defense Technology)(in Chinese)[柳军2004博士论文(长沙:国防科技大学)]

    [18]

    Bisek N J 2010Ph.D.Dissertation(Michigan:University of Michigan)

    [19]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA TP-2867

    [20]

    Fujino T, Ishikawa M 2006IEEE Trans.Plasma Sci. 34 409

  • [1]

    Zhu Y J, Jiang Y S, Hua H Q, Zhang C H, Xin C W 2014Acta Phys.Sin. 63 244101(in Chinese)[朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟2014物理学报63 244101]

    [2]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015Acta Phys.Sin. 64 015101(in Chinese)[赵光银, 李应红, 梁华, 化为卓, 韩孟虎2015物理学报64 015101]

    [3]

    Tian Z Y, Zhang K P, Pan S, Li H 2008Chin.Quar.Mechan. 29 72(in Chinese)[田正雨, 张康平, 潘沙, 李桦2008力学季刊29 72]

    [4]

    Zhang S H, Zhao H, Du A M, Cao X 2013Sci.China:Tech.Sci. 43 1242(in Chinese)[张绍华, 赵华, 杜爱民, 曹馨2013中国科学:技术科学43 1242]

    [5]

    Bityurin V A, Bocharov A N 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-1033

    [6]

    Bisek N J, Gosse R, Poggie J 2013J.Spacecraft Rockets 50 927

    [7]

    Yoshino T, Fujino T, Ishikawa M 201041st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010

    [8]

    Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009J.Spacecraft Rockets 46 274

    [9]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 201218th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24-282012, AIAA 2012-5804

    [10]

    Otsu H, Konigorski D, Abe T 2010AIAA J. 48 2177

    [11]

    Matsushita K 2003Ph.D.Dissertation(Tokyo:University of Tokyo)

    [12]

    Otsu H, Matsushita K, Konigorski D, Funaki I, Abe T 2004AIAA 2004-2167

    [13]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007J.Spacecraft Rockets 44 625

    [14]

    Matsuda A, Kawamura M, Takizawa Y, Otsu H, Konigorski D, Sato S, Abek T 200745th AIAA Aerospace Sciences Meeting and Exhibit Reno Nevada, January 8-112007

    [15]

    LH Y, Lee C H 2010Chin.Sci.Bull. 55 1182(in Chinese)[吕浩宇, 李椿萱2010科学通报55 1182]

    [16]

    Li K, Liu W Q 2016Acta Phys.Sin. 65 064701(in Chinese)[李开, 刘伟强2016物理学报65 064701]

    [17]

    Liu J 2004Ph.D.Dissertation(Changsha:National University of Defense Technology)(in Chinese)[柳军2004博士论文(长沙:国防科技大学)]

    [18]

    Bisek N J 2010Ph.D.Dissertation(Michigan:University of Michigan)

    [19]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA TP-2867

    [20]

    Fujino T, Ishikawa M 2006IEEE Trans.Plasma Sci. 34 409

  • [1] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] Miao Yu-Zhao, Tang Gui-Hua. Thermal protection characteristics of non-enclosed thermal cloak. Acta Physica Sinica, 2024, 73(3): 034401. doi: 10.7498/aps.73.20231262
    [3] Qiang Xiao-Bin, Lu Hai-Zhou. Quantum transport in topological matters under magnetic fields. Acta Physica Sinica, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [4] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [6] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [7] Yao Xiao, Liu Wei-Qiang, Tan Jian-Guo. Analysis of magnetohydrodynamic drag character for hypersonic vehicles. Acta Physica Sinica, 2018, 67(17): 174702. doi: 10.7498/aps.67.20180478
    [8] Li Kai, Liu Jun, Liu Wei-Qiang. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system. Acta Physica Sinica, 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [9] Li Kai, Liu Wei-Qiang. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles. Acta Physica Sinica, 2016, 65(6): 064701. doi: 10.7498/aps.65.064701
    [10] Su Qing-Feng, Liu Chang-Zhu, Wang Lin-Jun, Xia Yi-Ben. Hall effect of different textured CVD diamond films. Acta Physica Sinica, 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
    [11] Zhu Yan-Ju, Jiang Yue-Song, Hua Hou-Qiang, Zhang Chong-Hui, Xin Can-Wei. Modified equivalent current approximation and graphical electromagnetic computing method of analyzing radar cross section of missile target scatterer covered with thermal protection layer. Acta Physica Sinica, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [12] Wei Pang, Li Kang, Feng Xiao, Ou Yun-Bo, Zhang Li-Guo, Wang Li-Li, He Ke, Ma Xu-Cun, Xue Qi-Kun. Growth of micro-devices of topological insulator thin films by molecular beam epitaxy on substrates pre-patterned with photolithography. Acta Physica Sinica, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [13] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [14] Hou Bi-Hui, Liu Feng-Yan, Jiao Bin, Yue Ming. Study of electron density of nanostructure metal Tm. Acta Physica Sinica, 2012, 61(7): 077302. doi: 10.7498/aps.61.077302
    [15] Wang Jing-Wei, Bian Ji-Ming, Sun Jing-Chang, Liang Hong-Wei, Zhao Jian-Ze, Du Guo-Tong. Ag doped p-type ZnO films and its optical and electrical properties. Acta Physica Sinica, 2008, 57(8): 5212-5216. doi: 10.7498/aps.57.5212
    [16] Luo Cheng-Lin, Yang Bing-Chu, Rong Mao-Hua. Influence of magnetic field on the morphology of Zn electrodeposits grown on filter paper. Acta Physica Sinica, 2006, 55(7): 3778-3784. doi: 10.7498/aps.55.3778
    [17] Chen Wei-Ping, Feng Shang-Shen, Jiao Zheng-Kuan. Spin polarized dependent Hall effect in metallic granular film Fe15.16Ag84.84. Acta Physica Sinica, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [18] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [19] ZHU XUE-GUANG, KUANG GUANG-LI, XIE JI-KANG. THE COUPLING CALCULATION OF A 3-DIMENSION CAVITY LOOP ANTENNA. Acta Physica Sinica, 2000, 49(10): 1978-1981. doi: 10.7498/aps.49.1978
    [20] SHEN XUE-MIN. ION BERNSTEIN WAVE COUPLING FOR POLOIDAL ELECTROSTATIC ANTENNA IN TOKAMAK. Acta Physica Sinica, 1991, 40(8): 1280-1289. doi: 10.7498/aps.40.1280
Metrics
  • Abstract views:  6489
  • PDF Downloads:  130
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2016
  • Accepted Date:  06 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回