Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters

Che Bi-Xuan Li Xiao-Kang Cheng Mou-Sen Guo Da-Wei Yang Xiong

Citation:

A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters

Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Pulsed inductive thruster, which employs pulsed inductive magnetic field to ionize propellant and accelerate a bulk of plasma, is accompanied with complicated phenomena such as plasma physics, magnetohydrodynamics and the strong coupling effect between the drive-circuit and plasma load. Simulations employing a snowplow circuit model or present magnetohydrodynamic model might be insufficient to capture these important phenomena simultaneously and self-consistently. Therefore the validity of currently existing numerical models remain to be verified. In this paper, a novel circuit-coupled magnetohydrodynamic model is proposed. The flow process of the plasma in the acceleration channel and the discharge process of the circuit are solved simultaneously in a bi-directionally coupled method by calculating the voltage drop across the drive-coil according to the drive-coil geometry and the temporal electric field distribution. The magnetohydrodynamic field is solved with Navier-Stokes equations coupled with Maxwell equations, while the plasma thermodynamic parameters and transport parameters are calculated by employing the local thermal equilibrium model. And the circuit process is solved with a set of circuit equations based on Kirchhoff's law. All the physics fields are computed by the finite element method in COMSOL MultiphysicsTM. Numerical simulation for American TRW Inc.'s MK-1 thruster successfully reproduces its working process. The numerical magnetic field distribution in plasma, the time-dependent collective Lorentz force and the specific impulse and efficiency of the thruster under varying working voltages agree well with the corresponding experimental data. Numerical results imply that a compact azimuthal plasma current sheet is established in the initial 1-2 s in the near-face region of the drive-coil. This plasma current sheet, which entrains the majority of the propellant, is excluded and accelerated by the Lorentz force derived from the drive-coil magnetic field. Most of the propellant acceleration is accomplished within the first half period of the circuit current, which is about 7-8 s. Furthermore, the bi-directional coupling effect is quantitatively analyzed with the current model. Numerical results indicate that the coupling plasma load generally tends to increase the effective resistance and reduce the effective inductance of the drive-circuit. Moreover, this effect changes as the plasma structure varies. When the plasma current sheet moves away from the drive-coil, the mutual inductance between plasma load and drive-coil decreases monotonically. That implys that the plasma current sheet decouples gradually from the dirve-circuit in the process. In conclusion, bidirectional coupling effect between plasma load and drive-circuit plays an important role in the operation of the thruster. This model could be used to predict the performances of pulsed inductive thrusters and might be helpful in designing a more effective thruster.
      Corresponding author: Che Bi-Xuan, chebixuan@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51306203).
    [1]

    Polzin K A 2011 J. Prop. Power. 27 3

    [2]

    Martin A K, Dominguez A, Eskridge R H 2015 34th International Electric Propulsion Conference Hyogo-Kobe, Japan, July 4-10, 2015 p50

    [3]

    Russell D, Poylio J H, Goldstein W 2004 Space Conference and Exhibit San Diego, America, September 28-30, 2004 p6054

    [4]

    Dailey C L, Loveberg R H 1987 Pulsed Inductive Thruster Component Technology AFAL TR 07 012

    [5]

    Dailey C L, Loveberg R H 1989 AIAA/ASME/SAE/ ASEE 25th Joint Propulsion Conference Monterey, America, July 10-12, 1989 p2266

    [6]

    Dailey C L, Lovberg R H 1993 The PIT MkV Pulsed Inductive Thruster NASA CR 19 1155

    [7]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci.. 34 3

    [8]

    Polzin K A 2006 Ph. D. Dissertation.(Princeton: Princeton University)

    [9]

    Polzin K A, Sankaran K, Ritchie A G, Reneau J P 2013 J. Phys. D: Appl. Phys. 46 475201

    [10]

    Martin A K 2016 J. Phys. D: Appl. Phys. 49 025201

    [11]

    Che B X 2015 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [车碧轩 2015 硕士学位论文 (长沙: 国防科技大学)]

    [12]

    Mikellides P G, Neilly C 2007 J. Prop. Power 23 51

    [13]

    Mikellides P G, Ratnayake N 2007 J. Prop. Power 23 854

    [14]

    Mikellides P G, Villarreal J K 2007 J. Appl. Phys. 102 103301

    [15]

    Cheng Y G, Xia G Q 2017 Acta Phys. Sin. 66 075204(in Chinese) [成玉国, 夏广庆 2017 物理学报 66 075204]

    [16]

    Cheng Y G 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [成玉国 2015 博士学位论文 (长沙: 国防科技大学)]

    [17]

    Li M, Liu H, Ning Z X 2015 IEEE Trans. Plasma Sci. 43 12

    [18]

    John D A (translated by Yang Y) 2011 Hypersonic and High-Temperature Gas Dynamics.(2nd Ed.) (Beijing: Aviation Industry Press) pp421-422 (in Chinese) [小约翰 D A 著 (杨永 译) 2011 高超声速和高温气体动力学(第二版)(北京: 航空工业出版社)第421422页]

    [19]

    Cheng X 2009 Thermal Plasma Heat Transfer and Flow (Bejiing: Science Press) pp50-55 (in Chinese) [陈熙 2009 热等离子体传热与流动(北京: 科学出版社) 第5055页]

    [20]

    Deb P, Agarwal R K 2001 AIAA Aerospace Sciemces Meeting . Exhibit Reno, America 2001, p794

    [21]

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)]

    [22]

    Ahangar M, Ebrahimi R, Shams M 2014 Acta Astronaut. 103 129

    [23]

    Heiermann J 2002 Ph. D. Dissertation. (Stuttgart: Universitat Stuttgart)

    [24]

    Sankaran K 2005 Ph. D. Dissertation (Princeton: Princeton University)

    [25]

    Glumb R J, Krier H 1986 AIAA J. 24 1331

    [26]

    Lovberg R H, Dailey C L 1982 AIAA/JSASS/DGLR 16th International Electric Propulsion Conference New Orleans, America, November 17-19, 1982 p1921

    [27]

    Lovberg R H, Dailey C L 1982 AIAA J. 20 971

  • [1]

    Polzin K A 2011 J. Prop. Power. 27 3

    [2]

    Martin A K, Dominguez A, Eskridge R H 2015 34th International Electric Propulsion Conference Hyogo-Kobe, Japan, July 4-10, 2015 p50

    [3]

    Russell D, Poylio J H, Goldstein W 2004 Space Conference and Exhibit San Diego, America, September 28-30, 2004 p6054

    [4]

    Dailey C L, Loveberg R H 1987 Pulsed Inductive Thruster Component Technology AFAL TR 07 012

    [5]

    Dailey C L, Loveberg R H 1989 AIAA/ASME/SAE/ ASEE 25th Joint Propulsion Conference Monterey, America, July 10-12, 1989 p2266

    [6]

    Dailey C L, Lovberg R H 1993 The PIT MkV Pulsed Inductive Thruster NASA CR 19 1155

    [7]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci.. 34 3

    [8]

    Polzin K A 2006 Ph. D. Dissertation.(Princeton: Princeton University)

    [9]

    Polzin K A, Sankaran K, Ritchie A G, Reneau J P 2013 J. Phys. D: Appl. Phys. 46 475201

    [10]

    Martin A K 2016 J. Phys. D: Appl. Phys. 49 025201

    [11]

    Che B X 2015 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [车碧轩 2015 硕士学位论文 (长沙: 国防科技大学)]

    [12]

    Mikellides P G, Neilly C 2007 J. Prop. Power 23 51

    [13]

    Mikellides P G, Ratnayake N 2007 J. Prop. Power 23 854

    [14]

    Mikellides P G, Villarreal J K 2007 J. Appl. Phys. 102 103301

    [15]

    Cheng Y G, Xia G Q 2017 Acta Phys. Sin. 66 075204(in Chinese) [成玉国, 夏广庆 2017 物理学报 66 075204]

    [16]

    Cheng Y G 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [成玉国 2015 博士学位论文 (长沙: 国防科技大学)]

    [17]

    Li M, Liu H, Ning Z X 2015 IEEE Trans. Plasma Sci. 43 12

    [18]

    John D A (translated by Yang Y) 2011 Hypersonic and High-Temperature Gas Dynamics.(2nd Ed.) (Beijing: Aviation Industry Press) pp421-422 (in Chinese) [小约翰 D A 著 (杨永 译) 2011 高超声速和高温气体动力学(第二版)(北京: 航空工业出版社)第421422页]

    [19]

    Cheng X 2009 Thermal Plasma Heat Transfer and Flow (Bejiing: Science Press) pp50-55 (in Chinese) [陈熙 2009 热等离子体传热与流动(北京: 科学出版社) 第5055页]

    [20]

    Deb P, Agarwal R K 2001 AIAA Aerospace Sciemces Meeting . Exhibit Reno, America 2001, p794

    [21]

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)]

    [22]

    Ahangar M, Ebrahimi R, Shams M 2014 Acta Astronaut. 103 129

    [23]

    Heiermann J 2002 Ph. D. Dissertation. (Stuttgart: Universitat Stuttgart)

    [24]

    Sankaran K 2005 Ph. D. Dissertation (Princeton: Princeton University)

    [25]

    Glumb R J, Krier H 1986 AIAA J. 24 1331

    [26]

    Lovberg R H, Dailey C L 1982 AIAA/JSASS/DGLR 16th International Electric Propulsion Conference New Orleans, America, November 17-19, 1982 p1921

    [27]

    Lovberg R H, Dailey C L 1982 AIAA J. 20 971

  • [1] Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren. Iodine electron cyclotron resonance plasma source for electric propulsion. Acta Physica Sinica, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [2] Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er. Global model of miniature electron cyclotron resonance ion source. Acta Physica Sinica, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [3] Li Hang,  Yang Dong,  Li San-Wei,  Kuang Long-Yu,  Li Li-Ling,  Yuan Zheng,  Zhang Hai-Ying,  Yu Rui-Zhen,  Yang Zhi-Wen,  Chen Tao,  Cao Zhu-Rong,  Pu Yu-Dong,  Miao Wen-Yong,  Wang Feng,  Yang Jia-Min,  Jiang Shao-En,  Ding Yong-Kun,  Hu Guang-Yue,  Zheng Jian. Observation of hydrodynamic phenomena of plasma interaction in hohlraums. Acta Physica Sinica, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [4] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [5] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [6] Yang Zheng-Quan, Li Cheng, Lei Yi-An. Magnetohydrodynamic simulation of conical plasma compression. Acta Physica Sinica, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [7] Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang. Analysis on the effects of optics thermal deformation on the ion thruster operation. Acta Physica Sinica, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [8] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [9] Yang Bin, Niu Sheng-Li, Zhu Jin-Hui, Huang Liu-Xing. Research of the early debris expansion from high-altitude nuclear explosions. Acta Physica Sinica, 2012, 61(20): 202801. doi: 10.7498/aps.61.202801
    [10] Xia Guang-Qing, Xue Wei-Hua, Chen Mao-Lin, Zhu Yu, Zhu Guo-Qiang. Numerical simulation study on characteristic parameters of microcavity discharge in argon. Acta Physica Sinica, 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [11] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [12] Meng Li-Min, Teng Ai-Ping, Li Ying-Jun, Cheng Tao, Zhang Jie. Two-dimensional plasma hydrodynamic of X-ray laser based on self-similarity model. Acta Physica Sinica, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [13] Yang Yan-Nan, Yang Bo, Zhu Jin-Rong, Shen Zhong-Hua, Lu Jian, Ni Xiao-Wu. Mechanism and numerical simulation of laser-target impulse coupling in vacuum. Acta Physica Sinica, 2007, 56(10): 5945-5951. doi: 10.7498/aps.56.5945
    [14] Yang Juan, Su Wei-Yi, Mao Gen-Wang, Xia Guang-Qing. Numerical simulation of the internal flow in microwave plasma thruster in magnetic field. Acta Physica Sinica, 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
    [15] Wei Xin-Hua, Zhou Guo-Cheng, Cao Jin-Bin, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [16] Cang Yu, Lu Xin, Wu Hui-Chun, Zhang Jie. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics. Acta Physica Sinica, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [17] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Y u Guo-Yang, Guo Wen-Kang, Xu Ping. Study of the characteristic of D.C.arc plasma torch*. Acta Physica Sinica, 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [18] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Guo Wen-Kang, Xu Ping. Numerical study of supersonic plasma torch. Acta Physica Sinica, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [19] Zhou Guo-Cheng, Cao Jin-Bin, Wang De-Ju, Cai Chun-Lin. Low-frequency waves in collisionless plasma current sheet. Acta Physica Sinica, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [20] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
Metrics
  • Abstract views:  7141
  • PDF Downloads:  267
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2017
  • Accepted Date:  10 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回