-
Semi-magnetic topological insulators have garnered significant interest for their unique electronic properties, including the emergent half-quantized linear Hall effect. However, nonlinear Hall effects in these materials remain unexplored. This work systematically investigates the nonlinear Hall effect in semi-magnetic topological insulators and explores its dependence on the orientation of the magnetic moment in the magnetic layers. Using both analytical and numerical methods, we demonstrate that the nonlinear Hall conductance is more sensitive to the horizontal components of the magnetic moment compared to the linear Hall conductance, which predominantly depends on the vertical component of the magnetic moment. Our results reveal that the nonlinear Hall conductance can serve as a sensitive probe to detect changes in the orientation of the magnetic moment in experiments. Specifically, we show that the nonlinear Hall effect is governed by the Berry dipole moment, whose magnitude and direction vary with the tilt of the magnetic moment, offering a unique signature of its orientation. This work highlights the potential for using both linear and nonlinear Hall effects to map the direction of the magnetic moment in semi-magnetic topological insulators. Besides, the measurement of the nonlinear Hall effect can be directly implemented using existing experimental setups, without the need for additional modifications. The findings provide insights into the quantum transport behavior of the semi-magnetic topological insulator and pave the way for new experimental techniques to manipulate and probe their magnetic properties.
-
[1] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004
[4] Bernevig B A, Felser C, Beidenkopf H 2022 Nature 603 41
[5] Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[6] Liu J, Hesjedal T 2021 Adv. Mater. 35 2102427
[7] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167
[8] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516
[9] Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Morimoto T, Nagaosa N, Kawasaki M, Takahashi Y, Tokura Y 2022 Nat. Phys. 18 390
[10] Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002
[11] Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424
[12] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[13] Varnava N, Vanderbilt D 2018 Phys. Rev. B 98 245117
[14] Chen R, Li S, Sun H P, Liu Q, Zhao Y, Lu H Z, Xie X C 2021 Phys. Rev. B 103 L241409
[15] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522
[16] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669
[17] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801
[18] Lian Z, Wang Y, Wang Y, Dong W H, Feng Y, Dong Z, Ma M, Yang S, Xu L, Li Y, Fu B, Li Y, Jiang W, Xu Y, Liu C, Zhang J, Wang Y 2025 Nature 641 70
[19] Zhu K, Cheng Y, Liao M, Chong S K, Zhang D, He K, Wang K L, Chang K, Deng P 2024 Nano Letters 24 2181
[20] Du Z Z, Lu H Z, Xie X C 2021 Nat. Rev. Phys. 3 744
[21] SuSrez-Rodr[guez M, Juan F, Souza I, Gobbi M, Casanova F, Hueso L 2025 Nat. Mater. 24 1005
[22] Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G, Sun Z 2024 Nat. Mater. 23 1179
[23] Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G 2023 Phys. Rev. Lett. 131 256201
[24] Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601
[25] Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806
[26] Shvetsov O O, Esin V D, Timonina A V, Kolesnikov N N, Deviatov E V 2019 JETP Lett. 109 715
[27] Dzsaber S, Yan X, Taupin M, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q, Paschen S 2021 Proc. Natl. Acad. Sci. 118 e2013386118
[28] Qin M S, Zhu P E, Ye X G, Xu W Z, Song Z H, Liang J, Liu K, Liao Z M 2021 Chinese Phys. Lett. 38 017301
[29] Huang M, Wu Z, Hu J, Cai X, Li E, An L, Feng X, Ye Z, Lin N, Law K T, Wang N 2022 Natl. Sci. Rev. 10 nwac232
[30] Ho S C, Chang C H, Hsieh Y C, Lo S T, Huang B, Vu T H Y, Ortix C, Chen T M 2021 Nat. Elec. 4 116
[31] Shen S Q 2017 Topological Insulators (Springer: Singapore)
[32] Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107(R)
[33] Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113
[34] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
[35] Li R H, Heinonen O, Burkov A, Zhang S 2021 Phys. Rev. B 103 045105
[36] Nandy S, Zeng C, Tewari S 2021 Phys. Rev. B 104 205124
[37] Wang Y, Zhang Z, Zhu Z G, Su G 2024 Phys. Rev. B 109 085419
Metrics
- Abstract views: 45
- PDF Downloads: 2
- Cited By: 0