Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport of electron hopping regulated by the geometric configuration of quantum-dot arrays

WANG Bowei SHANG Zimeng HAN Weihua

Citation:

Transport of electron hopping regulated by the geometric configuration of quantum-dot arrays

WANG Bowei, SHANG Zimeng, HAN Weihua
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Dopant-induced quantum dot arrays in silicon-based nanostructures have attracted much attention due to their great application potential in fields such as quantum computing and quantum simulation. When quantum dots are arranged in different geometric configurations such as linear, annular, or grid shapes, the differences in their inherent topological properties will lead to significantly different spatial distribution of the Coulomb interaction potential. The potential field distribution directly affects the phase coherence of electron wavefunctions, thereby regulating the dynamic behaviors of electrons such as electron tunneling and hopping between quantum dots, thereby profoundly influencing the electron transport properties in the system.
    Our study aims to establish a basic theoretical framework to clarify the regulation mechanism of quantum dot geometric configurations on electron hopping transport. For this purpose, we construct a universal Fermi-Hubbard model for silicon-based dopant-induced quantum dot arrays. The model defines the distance between quantum dots through an effective Euclidean distance matrix (D), which uniquely determines the geometric shape of the array, and defines the allowed electron hopping modes through an adjacency matrix (A). Using the framework and exact diagonalization method, we perform detailed numerical simulations on the electron transport properties in the conventional unit cell of two-dimensional ordered distribution dopant-induced quantum dot arrays. Generally, the primitive unit of a two-dimensional orderly distributed dopant-induced quantum dot array is a regular polygon that satisfies specific translational and rotational symmetries. We thereby refer to the quantum dot arrays distributed according to regular polygons as annular arrays.
    The geometric features of annular quantum dot arrays and the electron hopping modes including nearest-neighbor hopping (NNH), next-nearest-neighbor hopping (NNNH) and long-range hopping (LRH), exhibit significant regulation on the electron addition energy and quantum conductance. The regulation arises from interactions of key energy parameters, including coupling strength (t), on-site Coulomb repulsion (U) and inter-site Coulomb repulsion (W). In the electron addition energy spectrum, such regulation manifests in two aspects, energy band broadening and Coulomb gap size. Band broadening is co-regulated by t and W. Under weak coupling conditions, the broadening Δt induced by coupling strength is proportional to t, with its proportional coefficient increasing with the number of hopping paths (LRH > NNNH > NNH). The broadening ΔW caused by inter-site Coulomb repulsion is proportional to W, with the proportional coefficient being β, which is a geometry-dependent correlation broadening coefficient. In multi-site annular arrays, β exhibits a logarithmic relationship with the site number N. The size of Coulomb gap is co-influenced by U, t and W. The competition between U and W determines the electron configuration mode (dominated by single-electron occupation of sites or double-electrons occupation of spaced sites), with a critical value α for electron configuration reconstruction that causes a change in electron configuration across the threshold. When U/W > α, single-electron occupation dominates, and the gap is determined by the competition between U and t; when U/W < α, double-electrons occupation dominates, the gap expands under the influence of W, accompanied by the formation of sub-bands.
    In the quantum conductance spectrum, regulation is reflected in the distribution of conductance peak intensity. Geometric characteristics significantly affect peak intensity distribution. Linear arrays exhibit concentrated peak intensities due to edge states formed by open boundaries. While annular arrays with periodic boundaries and no edge states, show more uniform peak distributions. Additionally, in annular arrays, the electron transport direction is non-collinear with the inter-site repulsion direction, endowing them with stronger robustness against transport inhibition induced by W. The influence of hopping modes is twofold. More hopping paths (LRH > NNNH > NNH) result in more non-zero hopping matrix elements,which causes higher average conductance. Meanwhile, hopping paths affect the phase coherence of wavefunctions, modulating the intensity of individual conductance peaks and forming distinct distribution.
    In conclusion, we establish a theoretical framework to clarify the physical mechanism, in which the geometric configurations and electron hopping modes of silicon-based dopant-induced quantum dot arrays regulate electron transport properties through synergistic interactions with key energy parameters (t, U, W). Electron addition energy spectra and quantum conductance spectra reveal the regulatory rules of these factors on electron transport behaviors, providing a theoretical guidance for the optimal design of silicon-based quantum devices.
  • [1]

    Prati E, Hori M, Guagliardo F, Ferrari G, Shinada T 2012 Nature Nanotechnology 7 443

    [2]

    Wang X, Khatami E, Fei F, Wyrick J, Namboodiri P, Kashid R, Rigosi A F, Bryant G, Silver R 2022 Nature Communications 13 6824

    [3]

    Hubbard J 1963 Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 276 238

    [4]

    Beenakker C W J 1991 Physical Review B 44 1646

    [5]

    Chen G, Klimeck G, Datta S, Chen G, Goddard W A 1994 Physical Review B 50 8035

    [6]

    Yu Z, Johnson A, Heinzel T 1998 Physical Review B 58 13830

    [7]

    Le N H, Fisher A J, Ginossar E 2017 Physical Review B 96 245406

    [8]

    Wang S-S, Li K, Dai Y-M, Wang H-H, Zhang Y-C, Zhang Y-Y 2023 Scientific Reports 13 5763

    [9]

    Devi S, Ahluwalia P K, Chand S 2020 Pramana 94 60

    [10]

    Gamble J K, Jacobson N T, Nielsen E, Baczewski A D, Moussa J E, Montaño I, Muller R P 2015 Physical Review B 91 235318

    [11]

    Hu X, Koiller B, Das Sarma S 2005 Physical Review B 71 235332

    [12]

    Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64

    [13]

    Voisin B, Bocquel J, Tankasala A, Usman M, Salfi J, Rahman R, Simmons M, Hollenberg L, Rogge S 2020 Nature communications 11 6124

    [14]

    Slater J C, Koster G F 1954 Physical review 94 1498

    [15]

    Grzybowski P R, Chhajlany R W 2012 physica status solidi (b) 249 2231

    [16]

    Janod E, Tranchant J, Corraze B, Querré M, Stoliar P, Rozenberg M, Cren T, Roditchev D, Phuoc V T, Besland M P 2015 Advanced Functional Materials 25 6287

    [17]

    Morgan N Y, Abusch-Magder D, Kastner M A, Takahashi Y, Tamura H, Murase K 2001 Journal of Applied Physics 89 410

    [18]

    Cha M-H, Hwang J 2020 Scientific Reports 10 16701

    [19]

    Ochoa M A, Liu K, Zieliński M, Bryant G 2024 Physical Review B 109 205412

    [20]

    Gerace D, Pavarini E, Andreani L C 2002 Physical Review B 65 155331

    [21]

    Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W, Kim M J 2011 Nano Letters 11 5465

  • [1] Liu Biao, Zhou Xiao-Fan, Chen Gang, Jia Suo-Tang. Current phases in Hofstadter ladder with staggered hopping. Acta Physica Sinica, doi: 10.7498/aps.69.20191964
    [2] Meng Teng-Fei, Tian Jian-Feng, Zhou Yao-Yao. Selective reflection spectrum in a quasi-lambda four-level atomic system. Acta Physica Sinica, doi: 10.7498/aps.69.20191099
    [3] Li Qun, Qu Yuan, Ban Shi-Liang. Buffer layer influence on light absorption of electron intersubband transition in binary energy level systems of quantum wells. Acta Physica Sinica, doi: 10.7498/aps.66.077301
    [4] Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic and magnetic transport properties of triangular graphene quantum-dot arrays. Acta Physica Sinica, doi: 10.7498/aps.66.138501
    [5] Yang Guang-Min, Xu Qiang, Li Bing, Zhang Han-Zhuang, He Xiao-Guang. Quantum capacitance performance of different nitrogen doping configurations of graphene. Acta Physica Sinica, doi: 10.7498/aps.64.127301
    [6] Luo Xiao-Hua. General solution of Schrödinger equation and electron transition in superlattice multi-quantum well. Acta Physica Sinica, doi: 10.7498/aps.63.017302
    [7] Ren Xue-Zao, He Shu, Cong Hong-Lu, Wang Xu-Wen. Two-site Hubbard-holstein model polaron of quantum entanglement properties. Acta Physica Sinica, doi: 10.7498/aps.61.124207
    [8] Wu Dong-Lan, Xie An-Dong, Wan Hui-Jun, Ruan Wen. Study on geometrical structure and spectrum ofpolymerization borohydride (BH3)n(n=13). Acta Physica Sinica, doi: 10.7498/aps.60.103101
    [9] Yang Xiao-Jie, Wang Qing, Ma Wen-Quan, Chen Liang-Hui. Calculation of energy levels in InGaAs/GaAs quantum dot array. Acta Physica Sinica, doi: 10.7498/aps.56.5429
    [10] Xu Jing, Wang Zhi-Guo, Chen Yu-Guang, Shi Yun-Long, Chen Hong. The phase diagram of Hubbard model with alternating chemical potentials. Acta Physica Sinica, doi: 10.7498/aps.54.307
    [11] Yan Shi-Ying, Ma Mei-Zhong, Zhu Zheng-He. The geometrical structure of B2H6 molecule. Acta Physica Sinica, doi: 10.7498/aps.54.3106
    [12] Xu Xiu-Lian, Wang Feng, Zhang Feng-Shou, Zeng Xiang-Hua. . Acta Physica Sinica, doi: 10.7498/aps.51.31
    [13] Jiang Zhen-Yi, Xu Xiao-Hong, Wu Hai-Shun, Zhang Fu-Qiang, Jin Zhi-Hao. . Acta Physica Sinica, doi: 10.7498/aps.51.1586
    [14] SHEN HAN-XIN, ZHU ZI-ZHONG, HUANG MEI-CHUN. THE GEOMETRY AND ELECTRONIC PROPERTIES OF NiAl. Acta Physica Sinica, doi: 10.7498/aps.50.95
    [15] WANG RONG, ZHU ZHENG-HE, YANG CHUAN-LU. GEOMETRY OF C42+ AND THE JAHN-TELLER EFFECT. Acta Physica Sinica, doi: 10.7498/aps.50.1675
    [16] WAN JUN, YE LING, WANG XUN. ATOMIC CONFIGURATION AND ELECTRONIC STRUCTURE OF ERBIUM-DOPED SILICON. Acta Physica Sinica, doi: 10.7498/aps.47.652
    [17] LAI YUN-ZHONG, LI WEI-DONG, LIANG JIU-QING. ADIABATIC TRANSITION TRANSFER PHENOMENON OF ELECTRONS AND THE QUANTUM STATISTICAL PROPERTIES OF LIGHT FIELD IN A KERR MEDIUM. Acta Physica Sinica, doi: 10.7498/aps.47.1489
    [18] WEI GUO-ZHU. ELECTRON CORRELATION EFFECT IN THE HUBBARD-HIRSCH MODEL. Acta Physica Sinica, doi: 10.7498/aps.43.1828
    [19] YANG QI-BING, YE HENG-QIANG. THE GEOMETRY OF LATTICE PLANES. Acta Physica Sinica, doi: 10.7498/aps.29.1033
    [20] 晶体中电子跃迁的理论. Acta Physica Sinica, doi: 10.7498/aps.14.191
Metrics
  • Abstract views:  58
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  12 August 2025
  • /

    返回文章
    返回