Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental progress of topological exciton insulators

Huang Yue-Lei Shan Yin-Fei Du Ling-Jie Du Rui-Rui

Citation:

Experimental progress of topological exciton insulators

Huang Yue-Lei, Shan Yin-Fei, Du Ling-Jie, Du Rui-Rui
PDF
HTML
Get Citation
  • Under Coulomb interactions, electrons and holes have a phase transition from a semi-metal state into an excitonic ground state, with a gap spontaneously opening at the Fermi level. The excitonic ground state is called excitonic insulator. The excitonic insulator has attracted extensive attention in condensed matter physics, but the experimental evidence of such a quantum state is still under search. Until recent years, optical spectral and transport evidence of the excitonic insulator has first been observed in shallowly inverted InAs/GaSb quantum wells, which confirms the existence of the exciton insulator in a two-dimensional system. Surprisingly, one-dimensional helical-like topological edge states, which are not sensitive to temperature nor magnetic field, have been observed in the excitonic insulator state by transport measurements. This new quantum phase cannot be well explained by existing single-particle theories, which is called a topological excitonic insulator. In this paper, we systematically review the experimental studies on the topological excitonic insulator in the InAs quantum well and GaAs quantum well, including magneto transport, terahertz transmission, capacitance, and Coulomb drag measurements. These experimental results comprehensively characterize the bulk properties and edge properties of the topological excitonic insulator. Furthermore, as a ground state consisting of bosons, the topological excitonic insulator is expected to have a quantum phase transition into Bose-Einstein condensate with macroscopic coherence under extreme conditions, which provides a new platform for studying the quantum phenomena of Coulomb interactions in low dimensions.
      Corresponding author: Du Ling-Jie, ljdu@nju.edu.cn ; Du Rui-Rui, rrd@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074177, 11921005), the National Key R&D Program of China (Grant No. 2019YFA0308400), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000).
    [1]

    Frenkel J 1931 Phys. Rev. 37 17Google Scholar

    [2]

    Wannier G H 1937 Phys. Rev. 52 191Google Scholar

    [3]

    Mott N F 1961 Philos. Mag. 6 287Google Scholar

    [4]

    Keldysh L, Kopaev Y V 1965 Sov. Phys. Solid State 6 2219

    [5]

    Jerome D, Rice T, Kohn W 1967 Phys. Rev. 158 462Google Scholar

    [6]

    Du L J, Li X, Lou W, Sullivan G, Chang K, Kono J, Du R R 2017 Nat. Commun. 8 1971Google Scholar

    [7]

    Halperin B, Rice T 1968 Rev. Mod. Phys. 40 755Google Scholar

    [8]

    Lozovik Y E, Yudson V 1975 JETP Lett. 22 274

    [9]

    Littlewood P, Zhu X 1996 Phys. Scr. 1996 56

    [10]

    Zhu X, Littlewood P, Hybertsen M S, Rice T 1995 Phys. Rev. Lett. 74 1633Google Scholar

    [11]

    Naveh Y, Laikhtman B 1996 Phys. Rev. Lett. 77 900Google Scholar

    [12]

    Kroemer H 2004 Physica E 20 196Google Scholar

    [13]

    Sakaki H, Chang L, Ludeke R, Chang C A, Sai-Halasz G, Esaki L 1977 Appl. Phys. Lett. 31 211Google Scholar

    [14]

    Datta S, Melloch M, Gunshor R 1985 Phys. Rev. B 32 2607

    [15]

    Cooper L, Patel N, Drouot V, Linfield E, Ritchie D, Pepper M 1998 Phys. Rev. B 57 11915Google Scholar

    [16]

    Naveh Y, Laikhtman B 1995 Appl. Phys. Lett. 66 1980Google Scholar

    [17]

    Liu C X, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601Google Scholar

    [18]

    Suzuki K, Harada Y, Onomitsu K, Muraki K 2013 Phys. Rev. B 87 235311Google Scholar

    [19]

    Mueller S, Pal A N, Karalic M, Tschirky T, Charpentier C, Wegscheider W, Ensslin K, Ihn T 2015 Phys. Rev. B 92 081303Google Scholar

    [20]

    Couedo F, Irie H, Suzuki K, Onomitsu K, Muraki K 2016 Phys. Rev. B 94 035301Google Scholar

    [21]

    Irie H, Akiho T, Couedo F, Suzuki K, Onomitsu K, Muraki K 2020 Phys. Rev. Mater. 4 104201

    [22]

    Knez I, Du R R, Sullivan G 2010 Phys. Rev. B 81 201301Google Scholar

    [23]

    Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603Google Scholar

    [24]

    Du L J, Li T X, Lou W K, Wu X J, Liu X X, Han Z D, Zhang C, Sullivan G, Ikhlassi A, Chang K, Du R R 2017 Phys. Rev. Lett. 119 056803Google Scholar

    [25]

    Buttiker M 1986 Phys. Rev. Lett. 57 1761Google Scholar

    [26]

    Buttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [27]

    Pikulin D, Hyart T 2014 Phys. Rev. Lett. 112 176403Google Scholar

    [28]

    Seradjeh B, Moore J, Franz M 2009 Phys. Rev. Lett. 103 066402Google Scholar

    [29]

    Yang M J, Yang C H, Bennett B B, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613Google Scholar

    [30]

    Kono J, Mccombe B, Cheng J P, Lo I, Mitchel W, Stutz C 1997 Phys. Rev. B 55 1617

    [31]

    Wang X, Belyanin A, Crooker S, Mittleman D, Kono J 2010 Nat. Phys. 6 126

    [32]

    Zhang Q, Lou M, Li X, Reno J L, Pan W, Watson J D, Manfra M J, Kono J 2016 Nat. Phys. 12 1005Google Scholar

    [33]

    Castella H, Wilkins J W 1998 Phys. Rev. B 58 16186Google Scholar

    [34]

    Zhang Q, Wang Y R, Gao W L, Long Z Q, Watson J D, Manfra M J, Belyanin A, Kono J 2016 Phys. Rev. Lett. 117 207402Google Scholar

    [35]

    Fenton E 1968 Phys. Rev. 170 816Google Scholar

    [36]

    Kuramoto Y, Horie C 1978 Solid State Commun. 25 713Google Scholar

    [37]

    Du L J, Knez I, Sullivan G, Du R R 2015 Phys. Rev. Lett. 114 096802Google Scholar

    [38]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [39]

    Skolasinski R, Pikulin D I, Alicea J, Wimmer M 2018 Phys. Rev. B 98 201404Google Scholar

    [40]

    Paul T, Becerra V F, Hyart T 2022 Phys. Rev. B 106 235420Google Scholar

    [41]

    Xue F, Macdonald A H 2018 Phys. Rev. Lett. 120 186802Google Scholar

    [42]

    Lopes N, Continentino M A, Barci D G 2022 Phys. Rev. B 105 165125Google Scholar

    [43]

    Zeng Y, Xue F, Macdonald A H 2022 Phys. Rev. B 105 125102Google Scholar

    [44]

    Blason A, Fabrizio M 2020 Phys. Rev. B 102 035146Google Scholar

    [45]

    Saberi-Pouya S, Conti S, Perali A, Croxall A F, Hamilton A R, Peeters F M, Neilson D 2020 Phys. Rev. B 101 140501Google Scholar

    [46]

    Varsano D, Palummo M, Molinari E, Rontani M 2020 Nat. Nanotechnol. 15 367Google Scholar

    [47]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [48]

    Chou Y Z, Nandkishore R M, Radzihovsky L 2018 Phys. Rev. B 98 054205Google Scholar

    [49]

    Zhang S B, Zhang Y Y, Shen S Q 2014 Phys. Rev. B 90 115305Google Scholar

    [50]

    Li C A, Zhang S B, Shen S Q 2018 Phys. Rev. B 97 045420Google Scholar

    [51]

    Vayrynen J I, Goldstein M, Glazman L I 2013 Phys. Rev. Lett. 110 216402Google Scholar

    [52]

    Ezawa Z F 2013 Quantum Hall Effects: Recent Theoretical and Experimental Developments (Vol. 3) (Singapore: World Scientific Publishing Company) pp370–388

    [53]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [54]

    Eisenstein J, Macdonald A 2004 Nature 432 691Google Scholar

    [55]

    Du L J, Zheng J, Chou Y Z, Zhang J, Wu X, Sullivan G, Ikhlassi A, Du R R 2021 Nat. Electron. 4 573Google Scholar

    [56]

    Narozhny B, Levchenko A 2016 Rev. Mod. Phys. 88 025003Google Scholar

    [57]

    Nazarov Y V, Averin D 1998 Phys. Rev. Lett. 81 653Google Scholar

    [58]

    Flensberg K 1998 Phys. Rev. Lett. 81 184Google Scholar

    [59]

    Klesse R, Stern A 2000 Phys. Rev. B 62 16912Google Scholar

    [60]

    Ponomarenko V, Averin D 2000 Phys. Rev. Lett. 85 4928Google Scholar

    [61]

    Debray P, Zverev V, Raichev O, Klesse R, Vasilopoulos P, Newrock R 2001 J. Phys. Condens. Matter 13 3389Google Scholar

    [62]

    Yamamoto M, Stopa M, Tokura Y, Hirayama Y, Tarucha S 2002 Physica E 12 726Google Scholar

    [63]

    Yamamoto M, Stopa M, Tokura Y, Hirayama Y, Tarucha S 2006 Science 313 204Google Scholar

    [64]

    Laroche D, Gervais G, Lilly M, Reno J 2011 Nat. Nanotechnol. 6 793Google Scholar

    [65]

    Laroche D, Gervais G, Lilly M, Reno J 2014 Science 343 631Google Scholar

    [66]

    Fiete G A, Le Hur K, Balents L 2006 Phys. Rev. B 73 165104Google Scholar

    [67]

    Dmitriev A, Gornyi I, Polyakov D 2012 Phys. Rev. B 86 245402Google Scholar

    [68]

    Chou Y Z, Levchenko A, Foster M S 2015 Phys. Rev. Lett. 115 186404Google Scholar

    [69]

    Kainaris N, Gornyi I, Levchenko A, Polyakov D 2017 Phys. Rev. B, 95 045150Google Scholar

    [70]

    Chou Y Z 2019 Phys. Rev. B 99 045125Google Scholar

    [71]

    Syperek M, Stühler R, Consiglio A, Holewa P, Wyborski P, Dusanowski L, Reis F, Hofling S, Thomale R, Hanke W 2022 Nat. Commun. 13 6313

    [72]

    Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T 2022 Nat. Phys. 18 1171Google Scholar

    [73]

    Liu X, Li J, Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P, Dean C R 2022 Science 375 205Google Scholar

    [74]

    Jia Y, Wang P, Chiu C L, et al. 2022 Nat. Phys. 18 87Google Scholar

    [75]

    Ma L, Nguyen P X, Wang Z, et al. 2021 Nature 598 585Google Scholar

    [76]

    Lee J, Kang C J, Eom M J, Kim J S, Min B I, Yeom H W 2019 Phys. Rev. B 99 075408Google Scholar

  • 图 1  (a) 6.1 Å家族材料的能带排列和每种材料的晶格常数, 阴影部分表示能隙, 单位为eV [12]; (b) InAs/GaSb反转量子阱的能带示意图, 电子被限制在InAs层, 空穴被限制在GaSb层, 红色虚线表示空穴带顶, 蓝色虚线表示电子带底, 该图主要为体现材料间的能量关系, 未画出界面处的能带弯曲; (c) 反转能带和非反转能带结构示意图; (d) 系统物态关于前栅压和背栅压的相图, 区域I, II, III为反转区, 区域II为费米能在体态能隙中时的量子自旋霍尔相, 区域I, III分别为p, n型掺杂的反转体系, 区域IV, V, VI为非反转区, 区域V为费米能在体态能隙中时的普通绝缘体, 区域IV, VI分别为p, n型掺杂的普通半导体[17]; (e) 反转能带下不同电子空穴浓度时的相图, 远离电荷中性点(charge neutral point, CNP), 系统表现为p型掺杂(p-doped)或n型掺杂(n-doped), 电荷中性点附近, 高载流子浓度时系统为量子自旋霍尔绝缘体(quantum spin Hall insulator, QSHI), 低浓度时为拓扑激子绝缘体(topological exciton insulator, TEI); (f) 典型的InAs/GaSb和InAs/GaInSb量子阱结构; (g) InAs/GaInSb器件在不同背栅压下的电荷中性点载流子浓度; (h) InAs/GaInSb量子阱制备的10 μm×5 μm的霍尔型器件在不同背栅压下的Rxx-Vf曲线; (i) 背栅压为0 V时, InAs/GaInSb量子阱制备的3 μm×1.5 μm霍尔型器件在不同垂直磁场下的Rxx-Vf曲线, 插图为RCNP-B曲线[24]

    Figure 1.  (a) Band lineups in the 6.1 Å family material and the lattice constants of each material, the shaded parts show the energy gaps with all energies in eV[12]; (b) the band diagram of inverted InAs/GaSb quantum wells, the electrons are confined in InAs layer, and the holes are confined in GaSb layer, the red dashed line indicates the top of hole band, while the blue dashed line indicates the bottom of electron band, the figure mainly reflects the energy relationship between materials, and the energy bending at the interface is not showed; (c) schematic of inverted and non-inverted band structures; (d) the phase diagram for different front (Vf) and back (Vb) gate voltages. Regions I, II, III are in the inverted regime, in which the striped region II is the quantum spin Hall phase with the Fermi-level in the bulk gap, and I, III are the p-doped and n-doped inverted system. Regions IV, V, VI are in the normal regime, in which the striped region V is the insulating phase with the Fermi level in the bulk gap, and IV, VI are the p-doped and n-doped normal semiconductors[17]; (e) the phase diagram for electron and hole densities in the inverted band structure. Away from the charge neutral point, the system is p-doped or n-doped, near the charge neutral point, the system is a quantum spin Hall insulator at high charge densities and a topological exciton insulator at low charge densities; (f) typical InAs/GaSb and InAs/GaInSb wafer structures; (g) the charge neutral point density vs. back gate voltage traces in the InAs/GaInSb device; (h) Rxx vs. Vf traces measured from a 10 μm×5 μm Hall bar of InAs/GaInSb quantum wells under different back gate voltages; (i) Rxx vs. Vf traces measured from a 3 μm×1.5 μm Hall bar of InAs/GaInSb quantum wells under different perpendicular magnetic fields at Vb = 0 V. Inset: RCNP vs. B trace[24].

    图 2  (a)—(d) 50 μm×50 μm非对称霍尔型器件的输运测量; (a), (b) Vb = 0 V和–6 V时B/(eRxy)随ΔVf的变化, 该数据在300 mK、外加1 T垂直磁场的条件下采集; (c), (d)分别为(a), (b)对应的能带, 红色区域I为电子主导区, 蓝色区域IV为空穴主导区, 绿色区域II为电子空穴共存区, 浅绿色区域III为杂化能隙, 虚线表示杂化能隙中剩余的电子和空穴, 金色区域V为激子绝缘体能隙, 插图为非对称霍尔型器件示意图, 虚线框内为前栅区域; (e) 电荷中性点处的载流子浓度随背栅压的变化; (f) 在B为0/9/18/35 T时, 经典反转能带中隧穿电子和空穴的色散关系, 计算采用8能带自洽模型; (g) Corbino测量装置示意图; (h) 在温度为30 mK, 平行磁场分别为0 T和35 T时, 不同载流子浓度的电导σxxVf曲线, 载流子浓度n0的单位为1010 cm–2; (i) Vb = 0 V时, 不同平行磁场下的能隙Δ, 误差提取自Arrhenius图中能隙的不确定度, 插图35 T时σxx极小值的Arrhenius图, 虚线为辅助线[6]

    Figure 2.  (a)–(d) Magneto-transport in an asymmetric 50 μm × 50 μm Hall bar device; (a), (b), B/(eRxy) versus ΔVf for Vb = 0 and –6 V, respectively, the data were taken at 300 mK with a 1 T perpendicular magnetic field; (c), (d) show band alignments corresponding to (a), (b), respectively, the red regime I is the electron dominating regime, the blue regime IV is the hole dominating regime, the green regime II is the electron-hole coexisting regime, the light green regime III is the soft gap, the dotted line means residual electron and hole filling in hybridization gap, the gold regime V is the hard gap (excitonic insulator gap), inset is the schematic of the asymmetric Hallbar, and the region in the dashed box is covered by the front gate; (e) charge neutral point density as a function of back gate bias; (f) energy dispersions calculated with an 8-band self-consistent model for tunneling electrons and holes with a typical inverted band at B = 0, 9, 18, 35 T; (g) schematic of the Corbino measurement; (h) density- dependent σxxVf traces under 0 T and 35 T in-plane magnetic fields at 30 mK, the value of n0 is noted in units of 1010 cm–2; (i) gap energy Δ vs. B trace at zero back-gate bias, the error bars come from the uncertainty in extraction of gap energy from Arrhenius plot. Inset is Arrhenius plot of the conductance minimum σxx at 35 T. Dashed line is a guide to the eye[6].

    图 3  激子绝缘体的激子对破缺能谱和太赫兹透射实验 (a) Vb = 0 V时, 激子关于波矢k的能隙函数Δ(k)(红色虚线)和对破缺能量E(k)(蓝色虚线); (b) 联合态密度(JDOS)关于能量E的函数, 插图为太赫兹激光诱发的激子对破缺(蓝点表示电子, 红点表示空穴, 黄色箭头表示太赫兹入射光); (c) Vb = 0 V时, 在1.4 K, 0 T的电荷中性点处的太赫兹透射谱, 插图为紫色层为InAs量子阱, 红色层为GaSb量子阱, 黄色波浪线为太赫兹激光, 黑色虚线表示太赫兹入射光在样品上聚焦时的横向范围; (d) 0 T时, 不同温度下的透射谱; (e), (f) 1.4 K和20 K时, 不同磁场下的透射谱, 光谱在垂直方向上平移, 太赫兹能谱的测量误差为±0.2 meV[6]

    Figure 3.  Pair-breaking excitation spectra and Terahertz transmission spectrum of excitonic insulator: (a) Gap function Δ(k) (red dashed line) and the pair-breaking energy E(k) (blue dashed line) of the exciton as a function of k for Vb = 0 V; (b) joint density of states (JDOS) as a function of energy. Inset: Pair-breaking induced by THz light (Blue dots are electrons, red dots are holes, yellow arrow is THz light); (c) transmission spectrum at the CNP at 1.4 K and 0 T for Vb = 0 V (Inset: The purple layer represents the InAs quantum well, the red layer represents the GaSb quantum well, the yellow wave indicates the THz light, the dashed black circle marks the lateral extent of the focused THz beam at the sample position); (d) transmittance spectra at various temperatures at 0 T; (e), (f) transmittance spectra at different magnetic fields at 1.4 and 20 K, respectively, the spectra are vertically offset for clarity, the measurement uncertainty in THz energy is ±0.2 meV[6].

    图 4  (a) 电容测量的装置结构示意图; (b) 电容测量电路图; (c) Vb = 0 V(红线)和–6 V(蓝线)时的CVf曲线; (d) Vb = 0 V时, 不同温度(0.3, 2, 4, 6, 10 K)下的CVf曲线; (e) Vb = 0 V时, 能隙Δ随温度的变化, 红色数据点是基于Cq测量值得到的能隙, 虚线为计算得到的能隙. 误差棒来源于Cq和温度的不确定性[6]

    Figure 4.  (a) Schematic of the structure for capacitance measurement; (b) diagram for capacitance measurement circuit; (c) C vs. ΔVf traces for Vb = 0 V (red line) and –6 V (blue line); (d) C vs. ΔVf curves under different temperatures (0.3 K, 2 K, 4 K, 6 K and 10 K) for Vb = 0 V; (e) Gap energy Δ vs. T trace for Vb = 0 V, at the charge-neutral point, the gap energies are extracted from Cq, the dotted dashed line is from the calculation, the error bars come from the uncertainties in Cq and the temperature[6].

    图 5  体态电导对背栅压和垂直磁场的依赖性 (a) 不同背栅压时电导最小值的Arrhenius图, 根据σxx ∝ exp(–Δ/2kBT)拟合得到Δ; 图中σxx根据2.5 K处的值归一化, 虚线为辅助线; (b) 能隙Δ-Vb[6]; (c) 300 mK时, Corbino器件在垂直磁场下测量到的电导G-Vf曲线; (d) G-B曲线[37]

    Figure 5.  Dependence of bulk conductance on back gate bias and perpendicular magnetic fields: (a) Arrhenius plot of the conductance minimum for different back-gate bias voltages, the data can be fit by σxx ∝ exp(–Δ/2kBT) to obtain Δ, here the σxx is normalized by its value at 2.5 K, dashed lines are guides to the eye; (b) measured gap energy Δ vs. Vb trace[6]; (c) G vs. Vf traces measured in Corbino device at T = 300 mK under perpendicular magnetic fields; (d) G vs. B traces[37].

    图 6  介观器件中的拓扑边缘态输运 (a) 在1 μm×2 μm的霍尔型器件和π型器件中, 分别测到量子化为2e2/h和4e2/h的宽电导平台, 插图为平台在温度低于4 K时保持稳定; (b) 在300 mK, 0 T时, 非反转量子阱的10 μm×20 μm霍尔器件中测得的RxxVf曲线, 插图为非反转能带示意图; (c) 不同边缘长度的器件中的边缘电荷输运, 插图为不同温度下的Rxx-L曲线; (d) 在1 μm×1 μm两端结器件、1 μm×1 μm和1 μm×2 μm π型器件、1 μm×2 μm、5 μm×10 μm和10 μm×20 μm霍尔型器件中, Rxx-L曲线; (e), (f) 测量4种不同结构的器件的边缘态对磁场的依赖性, 对器件分别施加(e) 磁场方向平行(空心圆形)或垂直(空心三角形)于边缘轴向的平行面内磁场, (f) 垂直于量子阱平面的磁场[37]

    Figure 6.  Topological edge transport in mesoscopic devices: (a) Wide conductance plateaus in 1 μm×2 μm Hallbar and π bar quantized to 2e2/h and 4e2/h, respectively (Inset: Plateau persists to 4 K); (b) measured Rxx vs. ΔVf trace in a 10 μm × 20 μm Hall bar from the noninverted quantum wells at 300 mK and 0 T (Inset: A sketch of noninverted band); (c) electrical charge transport in devices with different edge lengths (Inset: Rxx vs. device edge length L traces under different temperature); (d) Rxx vs. device edge length L traces in 1μm×1μm junction, 1 μm×1 μm and 1 μm×2 μm π bars, 1 μm×2 μm, 5 μm×10 μm and 10 μm×20 μm Hall bars; (e), (f) dependence of edge states under high magnetic fields in four different kinds of devices, an in-plane magnetic field (e) with a direction parallel (open circles) or perpendicular (open triangulars) to the edge axis and a perpendicular magnetic field (f) is applied to the device, respectively[37].

    图 7  (a), (b) 正和负库仑拖曳, 红线和蓝线分别表示手性相反的边缘态; (c) 劈裂的H器件中, 有源驱动电路和拖曳电路的示意图, 驱动电路中, 电极3注入电流, 电极1接地. 拖曳电路中, 测量电极2与4间的电压. 绿框内为库仑拖曳的关键部分. 插图: H器件中间劈裂的空气间隙的扫描电子显微镜成像, 比例尺为100 nm; (d) 相邻两个边缘态的线性色散关系, 费米能在狄拉克点附近; (e), (f) 负和正库仑拖曳的净电流流向示意图, 虚线表示净电流方向, 驱动电路的设置与(c)一致[47]

    Figure 7.  Positive (a) and negative (b) Coulomb drags, red and blue lines denote edge states with opposite chirality; (c) schematic of active drive circuit and drag circuit in a split H-bar, a current is injected into contact 3 with contact 1 grounded, and a voltage between contacts 2 and 4 is measured, the active part for Coulomb drag is highlighted by a green box (Inset: Scanning electron micrograph of the air gap in a split H-bar, scale bar is for 100 nm); (d) linearly dispersing energy band structures of two neighboring edges with the Fermi level around the Dirac point; (e), (f) current flow of the negative and positive drag, dashed lines show the current flow, the current is injected into the drive circuit in the same way as in (c)[47].

    图 8  拓扑边缘态间的库仑拖曳信号对前栅压和温度的依赖性 在300 mK (a), 1 K (b), 1.5 K (c) 和2 K (d)下, 劈裂的H器件中边缘态的拖曳电阻随前栅压的变化, 将电阻信号最强处设为ΔVf = 0 V, 紫色阴影表示激子绝缘体区(插图(i)和(ii)分别描述了直接背散射和反转背散射机制), 蓝色和红色线对应具有线性色散关系的狄拉克能带, 实心/空心圆分别表示散射过程中的初始/最终状态; (e) 样品Ⅰ(蓝色)和样品Ⅱ(红色)在电荷中性点处拖曳电阻随温度的变化; (f)正负库仑拖曳电阻与温度的定性关系, 蓝绿色曲线表示反转背散射对负拖曳信号的贡献, 橙色曲线表示直接背散射对正拖曳信号的贡献[47]

    Figure 8.  Front gate voltage and temperature dependence of Coulomb drag signals in topological edges: Drag resistance of edge states vs. front-gate voltage in the split H-bar device at 300 mK (a), 1 K (b), 1.5 K (c) and 2 K (d), the zero front-gate voltage is set at the value for which the resistance is the largest, purple-shaded areas indicate the topological exciton insulator regime (Insets: (i) and (ii) describe the direct and umklapp backscattering mechanisms, respectively), the blue and red lines correspond to linearly dispersing Dirac bands, filled/open circles represent initial/final states in scattering, respectively; (e) temperature dependence of the drag resistance at the CNP for sample Ⅰ (blue) and sample Ⅱ(red); (f) qualitatively sketched temperature dependence of positive and negative drag resistivity, the blue-green curve indicates the contribution of negative drag from umklapp backscattering and the orange curve represents the contribution of positive drag from direct backscattering[47].

  • [1]

    Frenkel J 1931 Phys. Rev. 37 17Google Scholar

    [2]

    Wannier G H 1937 Phys. Rev. 52 191Google Scholar

    [3]

    Mott N F 1961 Philos. Mag. 6 287Google Scholar

    [4]

    Keldysh L, Kopaev Y V 1965 Sov. Phys. Solid State 6 2219

    [5]

    Jerome D, Rice T, Kohn W 1967 Phys. Rev. 158 462Google Scholar

    [6]

    Du L J, Li X, Lou W, Sullivan G, Chang K, Kono J, Du R R 2017 Nat. Commun. 8 1971Google Scholar

    [7]

    Halperin B, Rice T 1968 Rev. Mod. Phys. 40 755Google Scholar

    [8]

    Lozovik Y E, Yudson V 1975 JETP Lett. 22 274

    [9]

    Littlewood P, Zhu X 1996 Phys. Scr. 1996 56

    [10]

    Zhu X, Littlewood P, Hybertsen M S, Rice T 1995 Phys. Rev. Lett. 74 1633Google Scholar

    [11]

    Naveh Y, Laikhtman B 1996 Phys. Rev. Lett. 77 900Google Scholar

    [12]

    Kroemer H 2004 Physica E 20 196Google Scholar

    [13]

    Sakaki H, Chang L, Ludeke R, Chang C A, Sai-Halasz G, Esaki L 1977 Appl. Phys. Lett. 31 211Google Scholar

    [14]

    Datta S, Melloch M, Gunshor R 1985 Phys. Rev. B 32 2607

    [15]

    Cooper L, Patel N, Drouot V, Linfield E, Ritchie D, Pepper M 1998 Phys. Rev. B 57 11915Google Scholar

    [16]

    Naveh Y, Laikhtman B 1995 Appl. Phys. Lett. 66 1980Google Scholar

    [17]

    Liu C X, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601Google Scholar

    [18]

    Suzuki K, Harada Y, Onomitsu K, Muraki K 2013 Phys. Rev. B 87 235311Google Scholar

    [19]

    Mueller S, Pal A N, Karalic M, Tschirky T, Charpentier C, Wegscheider W, Ensslin K, Ihn T 2015 Phys. Rev. B 92 081303Google Scholar

    [20]

    Couedo F, Irie H, Suzuki K, Onomitsu K, Muraki K 2016 Phys. Rev. B 94 035301Google Scholar

    [21]

    Irie H, Akiho T, Couedo F, Suzuki K, Onomitsu K, Muraki K 2020 Phys. Rev. Mater. 4 104201

    [22]

    Knez I, Du R R, Sullivan G 2010 Phys. Rev. B 81 201301Google Scholar

    [23]

    Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603Google Scholar

    [24]

    Du L J, Li T X, Lou W K, Wu X J, Liu X X, Han Z D, Zhang C, Sullivan G, Ikhlassi A, Chang K, Du R R 2017 Phys. Rev. Lett. 119 056803Google Scholar

    [25]

    Buttiker M 1986 Phys. Rev. Lett. 57 1761Google Scholar

    [26]

    Buttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [27]

    Pikulin D, Hyart T 2014 Phys. Rev. Lett. 112 176403Google Scholar

    [28]

    Seradjeh B, Moore J, Franz M 2009 Phys. Rev. Lett. 103 066402Google Scholar

    [29]

    Yang M J, Yang C H, Bennett B B, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613Google Scholar

    [30]

    Kono J, Mccombe B, Cheng J P, Lo I, Mitchel W, Stutz C 1997 Phys. Rev. B 55 1617

    [31]

    Wang X, Belyanin A, Crooker S, Mittleman D, Kono J 2010 Nat. Phys. 6 126

    [32]

    Zhang Q, Lou M, Li X, Reno J L, Pan W, Watson J D, Manfra M J, Kono J 2016 Nat. Phys. 12 1005Google Scholar

    [33]

    Castella H, Wilkins J W 1998 Phys. Rev. B 58 16186Google Scholar

    [34]

    Zhang Q, Wang Y R, Gao W L, Long Z Q, Watson J D, Manfra M J, Belyanin A, Kono J 2016 Phys. Rev. Lett. 117 207402Google Scholar

    [35]

    Fenton E 1968 Phys. Rev. 170 816Google Scholar

    [36]

    Kuramoto Y, Horie C 1978 Solid State Commun. 25 713Google Scholar

    [37]

    Du L J, Knez I, Sullivan G, Du R R 2015 Phys. Rev. Lett. 114 096802Google Scholar

    [38]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [39]

    Skolasinski R, Pikulin D I, Alicea J, Wimmer M 2018 Phys. Rev. B 98 201404Google Scholar

    [40]

    Paul T, Becerra V F, Hyart T 2022 Phys. Rev. B 106 235420Google Scholar

    [41]

    Xue F, Macdonald A H 2018 Phys. Rev. Lett. 120 186802Google Scholar

    [42]

    Lopes N, Continentino M A, Barci D G 2022 Phys. Rev. B 105 165125Google Scholar

    [43]

    Zeng Y, Xue F, Macdonald A H 2022 Phys. Rev. B 105 125102Google Scholar

    [44]

    Blason A, Fabrizio M 2020 Phys. Rev. B 102 035146Google Scholar

    [45]

    Saberi-Pouya S, Conti S, Perali A, Croxall A F, Hamilton A R, Peeters F M, Neilson D 2020 Phys. Rev. B 101 140501Google Scholar

    [46]

    Varsano D, Palummo M, Molinari E, Rontani M 2020 Nat. Nanotechnol. 15 367Google Scholar

    [47]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [48]

    Chou Y Z, Nandkishore R M, Radzihovsky L 2018 Phys. Rev. B 98 054205Google Scholar

    [49]

    Zhang S B, Zhang Y Y, Shen S Q 2014 Phys. Rev. B 90 115305Google Scholar

    [50]

    Li C A, Zhang S B, Shen S Q 2018 Phys. Rev. B 97 045420Google Scholar

    [51]

    Vayrynen J I, Goldstein M, Glazman L I 2013 Phys. Rev. Lett. 110 216402Google Scholar

    [52]

    Ezawa Z F 2013 Quantum Hall Effects: Recent Theoretical and Experimental Developments (Vol. 3) (Singapore: World Scientific Publishing Company) pp370–388

    [53]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [54]

    Eisenstein J, Macdonald A 2004 Nature 432 691Google Scholar

    [55]

    Du L J, Zheng J, Chou Y Z, Zhang J, Wu X, Sullivan G, Ikhlassi A, Du R R 2021 Nat. Electron. 4 573Google Scholar

    [56]

    Narozhny B, Levchenko A 2016 Rev. Mod. Phys. 88 025003Google Scholar

    [57]

    Nazarov Y V, Averin D 1998 Phys. Rev. Lett. 81 653Google Scholar

    [58]

    Flensberg K 1998 Phys. Rev. Lett. 81 184Google Scholar

    [59]

    Klesse R, Stern A 2000 Phys. Rev. B 62 16912Google Scholar

    [60]

    Ponomarenko V, Averin D 2000 Phys. Rev. Lett. 85 4928Google Scholar

    [61]

    Debray P, Zverev V, Raichev O, Klesse R, Vasilopoulos P, Newrock R 2001 J. Phys. Condens. Matter 13 3389Google Scholar

    [62]

    Yamamoto M, Stopa M, Tokura Y, Hirayama Y, Tarucha S 2002 Physica E 12 726Google Scholar

    [63]

    Yamamoto M, Stopa M, Tokura Y, Hirayama Y, Tarucha S 2006 Science 313 204Google Scholar

    [64]

    Laroche D, Gervais G, Lilly M, Reno J 2011 Nat. Nanotechnol. 6 793Google Scholar

    [65]

    Laroche D, Gervais G, Lilly M, Reno J 2014 Science 343 631Google Scholar

    [66]

    Fiete G A, Le Hur K, Balents L 2006 Phys. Rev. B 73 165104Google Scholar

    [67]

    Dmitriev A, Gornyi I, Polyakov D 2012 Phys. Rev. B 86 245402Google Scholar

    [68]

    Chou Y Z, Levchenko A, Foster M S 2015 Phys. Rev. Lett. 115 186404Google Scholar

    [69]

    Kainaris N, Gornyi I, Levchenko A, Polyakov D 2017 Phys. Rev. B, 95 045150Google Scholar

    [70]

    Chou Y Z 2019 Phys. Rev. B 99 045125Google Scholar

    [71]

    Syperek M, Stühler R, Consiglio A, Holewa P, Wyborski P, Dusanowski L, Reis F, Hofling S, Thomale R, Hanke W 2022 Nat. Commun. 13 6313

    [72]

    Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T 2022 Nat. Phys. 18 1171Google Scholar

    [73]

    Liu X, Li J, Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P, Dean C R 2022 Science 375 205Google Scholar

    [74]

    Jia Y, Wang P, Chiu C L, et al. 2022 Nat. Phys. 18 87Google Scholar

    [75]

    Ma L, Nguyen P X, Wang Z, et al. 2021 Nature 598 585Google Scholar

    [76]

    Lee J, Kang C J, Eom M J, Kim J S, Min B I, Yeom H W 2019 Phys. Rev. B 99 075408Google Scholar

  • [1] Jiang Cui, Li Jia-Rui, Qi Di, Zhang Lian-Lian. Effect of imaginary potential energy with parity-time symmetry on band structures and edge states of T-graphene. Acta Physica Sinica, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [2] Yang Yan-Li, Duan Zhi-Lei, Xue Hai-Bin. Edge states and skin effect dependent electron transport properties of non-Hermitian Su-Schrieffer-Heeger chain. Acta Physica Sinica, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [3] Gu Jie, Ma Li-Guo. Exciton insulator in a moiré lattice. Acta Physica Sinica, 2023, 72(6): 067101. doi: 10.7498/aps.72.20230079
    [4] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [5] Xia Qun, Deng Wen-Ji. Conductance peaks of bulk states and edge states. Acta Physica Sinica, 2022, 71(13): 137301. doi: 10.7498/aps.71.20212424
    [6] Zhang Lan-Yun, Xue Hai-Bin, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through a quantum-dot-Su-Schrieffer-Heeger-chain system. Acta Physica Sinica, 2020, 69(7): 077301. doi: 10.7498/aps.69.20191871
    [7] Lu Man-Xin, Deng Wen-Ji. Topological invariants and edge states in one-dimensional two-tile lattices. Acta Physica Sinica, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [8] Xu Nan, Zhang Yan. Topological edge states with skin effect in a trimerized non-Hermitian lattice. Acta Physica Sinica, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [9] Ma Li-Ya, Li Yu-Dong, Guo Qi, Ai Er-Ken, Wang Hai-Jiao, Zeng Jun-Zhe. Photoluminescence spectra of 1 MeV electron beam irradiated In0.53Ga0.47As/InP quantum well and bulk materials. Acta Physica Sinica, 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [10] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [11] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [12] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [13] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [14] Wang Huai-Qiang, Yang Yun-You, Ju Yan, Sheng Li, Xing Ding-Yu. Phase transition of ultrathin Bi2Se3 film sandwiched between ferromagnetic insulators. Acta Physica Sinica, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [15] Yang Shuang-Bo. Effect of doping concentration and doping thickness on the structure of electronic state of the Si uniformly doped GaAs quantum well. Acta Physica Sinica, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [16] Lei Xiao-Li, Wang Da-Wei, Liang Shi-Xiong, Wu Zhao-Xin. Wavefunction and Fourier coefficients of excitons in quantum wells: computation and application. Acta Physica Sinica, 2012, 61(5): 057803. doi: 10.7498/aps.61.057803
    [17] Jiang Wen-Long, Meng Zhao-Hui, Cong Lin, Wang Jin, Wang Li-Zhong, Han Qiang, Meng Fan-Chao, Gao Yong-Hui. The role of magnetic fields on the efficiency of OLED of double quantum well structures. Acta Physica Sinica, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [18] Eerdunchaolu. Influences of temperature and polaron effect on the ground state of quasi-two-dimensional strong-coupling exciton. Acta Physica Sinica, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [19] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [20] ZHANG XI-QING, MEI ZENG-XIA, DUAN NING, XU ZHENG, WANG YONG-SHENG, XU XU-RONG, Z.K.TANG. OPTICAL PROPERTIES OF CdSe/CdMnSe QUANTUM WELLS GROWN BY MEANS OF MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 2001, 50(6): 1167-1171. doi: 10.7498/aps.50.1167
Metrics
  • Abstract views:  3833
  • PDF Downloads:  309
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2023
  • Accepted Date:  24 May 2023
  • Available Online:  18 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回