Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Casimir effect in photonic topological insulator multilayered system

ZENG Ran FANG Shichao GAO Taiji LI Haozhen YANG Shuna YANG Yaping

Citation:

Casimir effect in photonic topological insulator multilayered system

ZENG Ran, FANG Shichao, GAO Taiji, LI Haozhen, YANG Shuna, YANG Yaping
cstr: 32037.14.aps.74.20250088
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The Casimir effect has received extensive attention theoretically and experimentally in recent years. It arises from the macroscopic manifestation of quantum vacuum fluctuations, and this Casimir interaction force can be an effective means of driving and controlling components in micro-electro-mechanical system (MEMS) and nano-electromechanical system (NEMS). Due to the new possibilities provided by photonic topological insulator for designing and using photonic devices, in this work, the Casimir force between the multilayer structures of non-reciprocal photonic topological insulators with broken time-reversal symmetry is investigated, and the influences of the dielectric tensor of the photonic topological insulator, the spatial structural parameters of the multilayer system, and the rotational degree of freedom on the Casimir force are examined. It is found that there exists Casimir repulsive force in such a multilayer system, and the Casimir stable equilibrium and restoring force can be further realized and controlled. Continuous variation between anti-mirror-symmetric configuration and mirror-symmetric configuration is examined. Both the Casimir attraction and repulsion can be generally enhanced through structural optimization by increasing layer number and individual layer thickness. Furthermore, we focus on the detailed analysis of how the optical axis angle difference within the photonic topological insulator layers can be used to adjust the Casimir force. The overall relative rotation of the multilayer system may adjust the magnitude and the direction of the Casimir force, and some inflection points can be found from the influence curve of the optical axis angle difference between internal layers of the multilayer on the Casimir force, allowing the rotational degrees of freedom in the multilayer system to be used for fine-adjusting the Casimir interaction. This work introduces the enhanced degrees of freedom for probing and manipulating the interaction between small objects in micro/nano systems, thereby suppressing adverse Casimir forces and effectively using them.
      Corresponding author: ZENG Ran, ranzeng@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274326, 62475064), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY21A040003), the China Postdoctoral Science Foundation (Grant No. 2023M732028), and the Fund from Key Laboratory of Quantum Technology and Device of Zhejiang Province, China (Grant No. 20230201).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [4]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [5]

    Luo W, Qi X L 2013 Phys. Rev. B 87 085431Google Scholar

    [6]

    Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021 Innovation 2 100098Google Scholar

    [7]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [8]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [9]

    王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 物理学报 73 064201Google Scholar

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin 73 064201Google Scholar

    [10]

    Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022 Chip 1 100003Google Scholar

    [11]

    Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [12]

    Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M 2021 J. Lightwave Technol. 39 7609Google Scholar

    [13]

    Tschernig K, Jimenez-Galán Á, Christodoulides D N, Ivanov M, Busch K, Bandres M A, Perez-Leija A 2021 Nat. Commun. 12 1974Google Scholar

    [14]

    Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021 Phys. Rev. Lett. 126 230503Google Scholar

    [15]

    Dai T X, Ao Y T, Bao J M, Mao J, Chi Y L, Fu Z R, You Y L, Chen X J, Zhai C H, Tang B, Yang Y, Li Z H, Yuan L Q, Gao F, Lin X, Thompson M G, O’Brien J L, Li Y, Hu X Y, Gong Q H, Wang J W 2022 Nat. Photonics 16 248Google Scholar

    [16]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar

    [17]

    Lustig E, Maczewsky L J, Beck J, Biesenthal T, Heinrich M, Yang Z, Plotnik Y, Szameit A, Segev M 2022 Nature 609 931Google Scholar

    [18]

    Teo H T, Xue H R, Zhang B L 2022 Phys. Rev. A 105 053510Google Scholar

    [19]

    Devi K M, Jana S, Chowdhury D R 2021 Opt. Mater. Express 11 2445Google Scholar

    [20]

    Casimir H B G 1948 Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793

    [21]

    Palasantzas G, Sedighi M, Svetovoy V B 2020 Appl. Phys. Lett. 117 120501Google Scholar

    [22]

    Vasilyev O A, Marino E, Kluft B B, Schall P, Kondrat S 2021 Nanoscale 13 6475Google Scholar

    [23]

    周帅, 柳开鹏, 戴士为, 葛力新 2025 物理学报 74 014202Google Scholar

    Zhou S, Liu K P, Dai S W, Ge L X 2025 Acta Phys. Sin 74 014202Google Scholar

    [24]

    Zeng R, Wang C, Zeng X D, Li H Z, Yang S N, Li Q L, Yang Y P 2020 Opt. Express 28 7425Google Scholar

    [25]

    Küçüköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J, Shegai T O 2024 Sci. Adv. 10 eadn1825Google Scholar

    [26]

    Grushin A G, Cortijo A 2011 Phys. Rev. Lett. 106 020403Google Scholar

    [27]

    Fuchs S, Lindel F, Krems R V, Hanson G W, Antezza M, Buhmann S Y 2017 Phys. Rev. A 96 062505Google Scholar

    [28]

    Lindel F, Hanson G W, Antezza M, Buhmann S Y 2018 Phys. Rev. B 98 144101Google Scholar

    [29]

    Masyukov M S, Grebenchukov A N 2021 Phys. Rev. B 104 165308Google Scholar

    [30]

    Nefedov I S, Valagiannopoulos C A, Melnikov L A 2013 J. Opt. 15 114003Google Scholar

    [31]

    Zeng R, Chen L, Nie W, Bi M, Yang Y, Zhu S 2016 Phys. Lett. A 380 2861Google Scholar

    [32]

    Chiadini F, Fiumara V, Lakhtakia A, Scaglione A 2019 Appl. Opt. 58 1724Google Scholar

    [33]

    Zeng R, Gao T, Ni P, Fang S, Li H, Yang S, Zeng Z 2024 J. Opt. 26 075602Google Scholar

    [34]

    Kenneth O, Klich I 2006 Phys. Rev. Lett. 97 160401Google Scholar

    [35]

    Silveirinha M G 2015 Phys. Rev. B 92 125153Google Scholar

    [36]

    Xu J, He P P, Feng D L, Luo Y M, Fan S Q, Yong K L, Tsakmakidis K L 2023 Opt. Express 31 42388Google Scholar

    [37]

    Holmes A M, Sabbaghi M, Hanson G W 2021 Phys. Rev. B 104 214433Google Scholar

    [38]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (Springer: New York

    [39]

    Silveirinha M G, Terças H, Antezza M 2023 Phys. Rev. B 108 235154Google Scholar

  • 图 1  光子拓扑绝缘体多层结构间Casimir效应示意图, 其中左右多层结构间距L, 左右侧结构相应的参考系分别对应为x-y-zx'-y'-z坐标系, 红色箭头表示光子拓扑绝缘体的x(x')方向光轴 (a) 两侧结构的该光轴反平行; (b) 两侧结构该光轴的夹角为$\theta $; (c) 系统内部各层相互间也存在光轴夹角

    Figure 1.  Sketch of the Casimir effect between multilayered structures made of photonic topological insulators, where L is the separation between two structures, x-y-z and x'-y'-z are the coordinates in the left and right structures, respectively. The red arrows indicate the x(x') optical axes of photonic topological insulators: (a) Anti-parallel on the two sides, (b) an angle $\theta $ between the two sides; (c) exist angles between layers within the system.

    图 2  反镜像对称的两个N层光子拓扑绝缘体结构(N = 1, 2, 3)间的Casimir作用力相对幅值随结构间距L的变化

    Figure 2.  Relative Casimir force between two N-layer photonic topological insulator structures (N = 1, 2, 3) with inversion-mirror symmetry as a function of the separation L.

    图 3  反镜像对称N层光子拓扑绝缘体结构间 (a) Casimir平衡回复力; (b) Casimir力随${\varepsilon _n}$的变化曲线

    Figure 3.  Within the anti-mirror symmetric N-layer photonic topological insulator structure: (a) The restoring Casimir force; (b) the Casimir force as a function of ${\varepsilon _n}$.

    图 4  反镜像对称N层光子拓扑绝缘体结构(N = 1, 2, 3)间的Casimir作用力相对幅值随单元层厚度的变化, 其中结构间距L = 1.0λ, 其他系统参数同图2中的取值

    Figure 4.  Relative Casimir force between two N-layer photonic topological insulator structures (N = 1, 2, 3) with inversion-mirror symmetry as a function of the layer thickness, where L = 1.0λ and other parameters are the same as in Fig. 2.

    图 5  N层光子拓扑绝缘体结构(N = 1, 2, 3)间的Casimir作用力相对幅值 (a)在镜像对称情况下随间距L的变化; (b)随光轴夹角$\theta $的变化

    Figure 5.  (a) Relative amplitude of Casimir force between N-layer photonic topological insulator structures (N = 1, 2, 3): (a) Variation with the separation L with mirror symmetry; (b) variation with the $\theta $.

    图 6  锑化铟三层系统间Casimir作用力相对幅值在不同 内部层间光轴夹角下随整体旋转角度$\theta $的变化, 其中相 关参数为${\omega _{\text{L}}} = 3.62 \times {10^{13}} {\text{ rad/s}}$, ${\omega _{\text{T}}} = 3.39 \times {10^{13}} {\text{ rad/s}}$, $\varGamma = 5.65 \times {10^{11}} {\text{ rad/s}}$, $\gamma = 3.39 \times {10^{12}} {\text{ rad/s}}$, $N = 1.07 \times $$ {10^{17}}\;{\text{c}}{{\text{m}}^{{{ - 3}}}}$, B = 10 T, 其他参数同图4中的取值

    Figure 6.  Relative Casimir force between the three-layer InSb systems as a function of the overall rotation angle $\theta $ under different optical axis angles between internal layers, where ${\omega _{\text{L}}} = 3.62 \times {10^{13}}\; {\text{rad/s}}$, ${\omega _{\text{T}}} = 3.39 \times {10^{13}} {\text{ rad/s}}$, $\varGamma = 5.65 \times $$ {10^{11}} {\text{ rad/s}}$, $\gamma = 3.39 \times {10^{12}} {\text{ rad/s}}$, $N = 1.07 \times {10^{17}}\;{\text{c}}{{\text{m}}^{{{ - 3}}}}$, B = 10 T, and other parameters are the same as in Fig. 4.

    图 7  锑化铟三层系统间Casimir力相对幅值随$\phi $角的变化, 其中B = 20 T, 其他各参数同图6

    Figure 7.  Relative Casimir force between the three-layer InSb systems as a function of $\phi $, where B = 20 T and other parameters are the same as in Fig. 6.

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [4]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [5]

    Luo W, Qi X L 2013 Phys. Rev. B 87 085431Google Scholar

    [6]

    Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021 Innovation 2 100098Google Scholar

    [7]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [8]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [9]

    王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 物理学报 73 064201Google Scholar

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin 73 064201Google Scholar

    [10]

    Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022 Chip 1 100003Google Scholar

    [11]

    Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [12]

    Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M 2021 J. Lightwave Technol. 39 7609Google Scholar

    [13]

    Tschernig K, Jimenez-Galán Á, Christodoulides D N, Ivanov M, Busch K, Bandres M A, Perez-Leija A 2021 Nat. Commun. 12 1974Google Scholar

    [14]

    Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021 Phys. Rev. Lett. 126 230503Google Scholar

    [15]

    Dai T X, Ao Y T, Bao J M, Mao J, Chi Y L, Fu Z R, You Y L, Chen X J, Zhai C H, Tang B, Yang Y, Li Z H, Yuan L Q, Gao F, Lin X, Thompson M G, O’Brien J L, Li Y, Hu X Y, Gong Q H, Wang J W 2022 Nat. Photonics 16 248Google Scholar

    [16]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar

    [17]

    Lustig E, Maczewsky L J, Beck J, Biesenthal T, Heinrich M, Yang Z, Plotnik Y, Szameit A, Segev M 2022 Nature 609 931Google Scholar

    [18]

    Teo H T, Xue H R, Zhang B L 2022 Phys. Rev. A 105 053510Google Scholar

    [19]

    Devi K M, Jana S, Chowdhury D R 2021 Opt. Mater. Express 11 2445Google Scholar

    [20]

    Casimir H B G 1948 Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793

    [21]

    Palasantzas G, Sedighi M, Svetovoy V B 2020 Appl. Phys. Lett. 117 120501Google Scholar

    [22]

    Vasilyev O A, Marino E, Kluft B B, Schall P, Kondrat S 2021 Nanoscale 13 6475Google Scholar

    [23]

    周帅, 柳开鹏, 戴士为, 葛力新 2025 物理学报 74 014202Google Scholar

    Zhou S, Liu K P, Dai S W, Ge L X 2025 Acta Phys. Sin 74 014202Google Scholar

    [24]

    Zeng R, Wang C, Zeng X D, Li H Z, Yang S N, Li Q L, Yang Y P 2020 Opt. Express 28 7425Google Scholar

    [25]

    Küçüköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J, Shegai T O 2024 Sci. Adv. 10 eadn1825Google Scholar

    [26]

    Grushin A G, Cortijo A 2011 Phys. Rev. Lett. 106 020403Google Scholar

    [27]

    Fuchs S, Lindel F, Krems R V, Hanson G W, Antezza M, Buhmann S Y 2017 Phys. Rev. A 96 062505Google Scholar

    [28]

    Lindel F, Hanson G W, Antezza M, Buhmann S Y 2018 Phys. Rev. B 98 144101Google Scholar

    [29]

    Masyukov M S, Grebenchukov A N 2021 Phys. Rev. B 104 165308Google Scholar

    [30]

    Nefedov I S, Valagiannopoulos C A, Melnikov L A 2013 J. Opt. 15 114003Google Scholar

    [31]

    Zeng R, Chen L, Nie W, Bi M, Yang Y, Zhu S 2016 Phys. Lett. A 380 2861Google Scholar

    [32]

    Chiadini F, Fiumara V, Lakhtakia A, Scaglione A 2019 Appl. Opt. 58 1724Google Scholar

    [33]

    Zeng R, Gao T, Ni P, Fang S, Li H, Yang S, Zeng Z 2024 J. Opt. 26 075602Google Scholar

    [34]

    Kenneth O, Klich I 2006 Phys. Rev. Lett. 97 160401Google Scholar

    [35]

    Silveirinha M G 2015 Phys. Rev. B 92 125153Google Scholar

    [36]

    Xu J, He P P, Feng D L, Luo Y M, Fan S Q, Yong K L, Tsakmakidis K L 2023 Opt. Express 31 42388Google Scholar

    [37]

    Holmes A M, Sabbaghi M, Hanson G W 2021 Phys. Rev. B 104 214433Google Scholar

    [38]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (Springer: New York

    [39]

    Silveirinha M G, Terças H, Antezza M 2023 Phys. Rev. B 108 235154Google Scholar

  • [1] WANG Yu, LIANG Yulin, XING Yanxia. Topological Anderson insulator phase in graphene. Acta Physica Sinica, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] ZHOU Shuai, LIU Kaipeng, DAI Shiwei, GE Lixin. Tunable Casimir equilibria in dual-liquid system. Acta Physica Sinica, 2025, 74(1): 014202. doi: 10.7498/aps.74.20241126
    [3] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] Huang Yue-Lei, Shan Yin-Fei, Du Ling-Jie, Du Rui-Rui. Experimental progress of topological exciton insulators. Acta Physica Sinica, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [5] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [6] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [7] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [8] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [9] Ding Yue, Shen Jie, Pang Yuan, Liu Guang-Tong, Fan Jie, Ji Zhong-Qing, Yang Chang-Li, Lü Li. Proximity-effect-induced superconductivity by granular Pb film on the surface of Bi2Te3 topological insulator. Acta Physica Sinica, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [10] Zhao Xu, Zhao Xing-Dong, Jing Hui. Simulating dnamical Casimir effect at finite temperature with magnons in spin chain within an optical lattice. Acta Physica Sinica, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [11] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [12] Tian Wen-Chao, Wang Lin-Bin, Jia Jian-Yuan. Casimir force, Hamaker force, stiction and snap-back. Acta Physica Sinica, 2010, 59(2): 1175-1179. doi: 10.7498/aps.59.1175
    [13] Zeng Ran, Yang Ya-Ping, Liu Shu-Tian. Influence of negative refractive index materials on repulsive Casimir forces. Acta Physica Sinica, 2008, 57(8): 4947-4952. doi: 10.7498/aps.57.4947
    [14] Liu Cheng-Zhou, Zhang Chang-Ping. The renormalized energy-momentum tensor and Casimir effect of Dirac field in two-dimensional static spacetime. Acta Physica Sinica, 2007, 56(4): 1928-1937. doi: 10.7498/aps.56.1928
    [15] Zeng Ran, Xu Jing-Ping, Yang Ya-Ping, Liu Shu-Tian. Influence of negative refractive material on Casimir effect. Acta Physica Sinica, 2007, 56(11): 6446-6450. doi: 10.7498/aps.56.6446
    [16] Bai Zhan-Wu. Casimir effect of the Maxwell-Chern-Simons field for two non-parallel lines boundary. Acta Physica Sinica, 2004, 53(8): 2472-2477. doi: 10.7498/aps.53.2472
    [17] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [18] Zhou Qing-Chun, Wang Jia-Fu, Xu Rong-Qing. . Acta Physica Sinica, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
    [19] SHI XIN, LI XIN-ZHOU. SOLID ANGULAR DEFICIT AND REPULSIVE GRAVITATIONAL FIELD. Acta Physica Sinica, 1991, 40(3): 353-358. doi: 10.7498/aps.40.353
    [20] XUE SHE-SHENG, XIAN DING-CHANG. THE CASIMIR EFFECT IN A GAUGE COVARIANT FIELD THEORY. Acta Physica Sinica, 1985, 34(8): 1084-1087. doi: 10.7498/aps.34.1084
Metrics
  • Abstract views:  492
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2025
  • Accepted Date:  12 March 2025
  • Available Online:  17 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回