搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双液体系统中的可调控Casimir平衡点

周帅 柳开鹏 戴士为 葛力新

引用本文:
Citation:

双液体系统中的可调控Casimir平衡点

周帅, 柳开鹏, 戴士为, 葛力新

Tunable Casimir equilibria in dual-liquid system

Zhou Shuai, Liu Kai-Peng, Dai Shi-Wei, Ge Li-Xin
PDF
HTML
导出引用
  • 稳定的Casimir平衡点来源于Casimir能函数曲线在空间构成陷阱处的最小值. 本文提出了一种基于双液体的可调控Casimir平衡点. 在金属衬底上, 由于有机溶液和水之间的不相溶性, 形成分层液体体系. 密度低的溶液在上层, 而密度高的溶液在底层. 研究发现, 沉浸在甲苯或苯溶液中的金属悬浮薄片存在稳定的Casimir平衡点. 此外, 倒置的溴苯@水系统中也存在Casimir平衡点. 这些Casimir平衡点距离液体分层界面的高度可通过水层的厚度实现灵活调控. 最后, 还分析讨论了系统温度和水的离子浓度对Casimir平衡点的影响. 本文开辟了一种调控Casimir平衡点的新途径, 并对微纳尺度颗粒的“量子囚禁”具有重要意义.
    The Casimir effect, a macroscopic manifestation of quantum phenomena, arises from zero-point energy and thermal fluctuations. When two objects are brought into close proximity, the Casimir effect manifests as a repulsive force, while at greater separations, it transforms into an attractive force. There exists a specific distance at which the Casimir force vanishes, which is referred to as the stable Casimir equilibrium. Stable Casimir equilibrium arises from the curve minimum value of the Casimir energy, which can create spatial trapping. The manipulation of stable Casimir equilibrium provides promising applications in fields such as tunable optical resonators and self-assembly. This work presents a scheme for achieving tunable Casimir equilibrium in a dual-liquid system. The system comprises a multilayered stratified structure with a gold substrate. Above the gold substrate, a stratified liquid system is formed due to the immiscibility between organic solutions and water. The lower-density solution is at the top, while the higher-density solution is at the bottom . Our results suggest that a stable Casimir equilibrium for a suspended gold nanoplate can be realized, when the suspended gold nanoplate is immersed in organic solution of toluene or benzene. Moreover, the height of the suspended gold nanoplate, determined by the stable Casimir equilibrium, can be precisely tuned by changing the thickness of the water layer. The effects of finite temperature and ionic concentration on the Casimir equilibria are also analyzed in this work. The results suggest that the separation height of Casimir equilibrium decreases with the increase of temperature. Interestingly, when the Debye shielding length is comparable to or smaller than the separation length, the ion concentration in water significantly affects the Casimir pressure allowing for extensive modulations of Casimir equilibrium. This work opens up a new avenue for adjusting Casimir equilibrium and has important applications in “quantum trapping” of micro-nano particles.
  • 图 1  (a) 两不相溶液体中的Casimir悬浮示意图. 金纳米薄片距离液体分层界面为d. 溶液1的密度小于溶液2的密度; 而溶液2作为隔离层, 紧邻金属衬底且具有可调控厚度L. (b) 金、水、溴苯、苯和甲苯的介电常数随虚频率变化曲线

    Fig. 1.  (a) Schematic diagram of Casimir suspension in two immiscible liquids. The distance between the gold nanoplate and the stratified liquid interface is d. The density of solution 1 is less than that of solution 2, while solution 2 acts as an isolation layer, close to the metal substrate and has a controllable thickness L. (b) Dielectric constants of gold, water, bromobenzene, benzene, and toluene change with the imaginary frequency.

    图 2  悬浮金纳米薄片受到的Casimir压强 (a) 苯@水; (b) 甲苯@水; (c) 溴苯@水; (d)倒置的溴苯@水. 压力的正号表示排斥力, 负号表示吸引力. 金纳米薄片的厚度L0 = 40 nm, 系统温度T = 300 K

    Fig. 2.  Casimir pressure acts on suspended metal nanoplates: (a) Benzene@water; (b) toluene@water; (c) bromobenzene@water; (d) tnverted bromobenzene@water. The positive sign of the pressure indicates repulsion, while the negative sign indicates attraction. Thickness of gold nanoplate L0 = 40 nm, and the temperature of system T = 300 K.

    图 3  液体隔离层在有限厚度下, 双液体系统中金纳米薄片受到的Casimir压强 (a) 苯@水; (b) 甲苯@水; (c) 溴苯@水; (d) 倒置的溴苯@水

    Fig. 3.  Casimir pressure acts on gold nanoplates in dual-liquid systems, where the layer thickness of liquid isolation is finite: (a) Benzene@water; (b) toluene@water; (c) bromobenzene@water; (d) inverted bromobenzene@water.

    图 4  不同温度下的Casimir压强 (a) 苯@水; (b) 甲苯@水; (c) 溴苯@水; (d)倒置的溴苯@水. 液体隔离层L的厚度设定为100 nm

    Fig. 4.  Casimir pressure at different temperatures: (a) Benzene@water; (b) toluene@water; (c) bromobenzene@water; (d) inverted bromobenzene@water. The thickness of the liquid isolation layer L is set to 100 nm.

    图 5  不同德拜屏蔽长度下, Casimir压强随距离d的变化曲线 (a) 苯@水; (b) 倒置的溴苯@水. 液体隔离层L的厚度设定为100 nm, 系统温度T = 300 K

    Fig. 5.  Casimir pressure changes with separation d under different Debye screening lengths: (a) Benzene@water; (b) inverted bromobenzene@water. Thickness of the liquid isolation layer L is set to 100 nm, and the system temperature T = 300 K.

  • [1]

    Casimir H B 1948 Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (Vol. 51) p793

    [2]

    苗兵 2020 物理学报 69 080505Google Scholar

    Miao B 2020 Acta Phys. Sin 69 080505Google Scholar

    [3]

    Klimchitskaya G, Mohideen U, Mostepanenko V 2009 Rev. Mod. Phys. 81 1827Google Scholar

    [4]

    Lamoreaux S K 1997 Phys. Rev. Lett. 78 5Google Scholar

    [5]

    Mohideen U, Roy A 1998 Phys. Rev. Lett. 81 4549Google Scholar

    [6]

    Garrett J L, Somers D A, Munday J N 2018 Phys. Rev. Lett. 120 040401Google Scholar

    [7]

    Woods L, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W, Podgornik R 2016 Rev. Mod. Phys. 88 045003Google Scholar

    [8]

    Rosa F S, Dalvit D A, Milonni P W 2008 Phys. Rev. Lett. 100 183602Google Scholar

    [9]

    Song G, Zeng R, Al-Amri M, Xu J P, Zhu C J, He P F, Yang Y P 2018 Opt. Express 26 34461Google Scholar

    [10]

    Grushin A G, Cortijo A 2011 Phys. Rev. Lett. 106 020403Google Scholar

    [11]

    Nie W J, Zeng R, Lan Y H, Zhu S Y 2013 Phys. Rev. B 88 085421Google Scholar

    [12]

    Chen L, Wan S L 2012 Phys. Rev. B 85 115102Google Scholar

    [13]

    Zhang Y C, Zhang H, Wang X X, Wang Y H, Liu Y C, Li S, Zhang T Y, Fan C, Zeng C G 2024 Nat. Phys. 20 1282Google Scholar

    [14]

    Jiang Q D, Wilczek F 2019 Phys. Rev. B 99 125403Google Scholar

    [15]

    Hu Y, Wu X H, Liu H T, Ge W X, Zhang J H, Huang X Q 2024 ACS Photonics 11 1998Google Scholar

    [16]

    Gong T, Corrado M R, Mahbub A R, Shelden C, Munday J N 2020 Nanophotonics 10 523Google Scholar

    [17]

    Bao F L, Shi K Z, Cao G J, Evans J S, He S L 2018 Phys. Rev. Lett. 121 130401Google Scholar

    [18]

    Chen L, Chang K 2020 Phys. Rev. Lett. 125 047402Google Scholar

    [19]

    Wang T B, Zhou Y, Mu H Q, Shehzad K, Zhang D J, Liu W X, Yu T B, Liao Q H 2022 Nanotechnology 33 245001Google Scholar

    [20]

    Yu T, You W, Wang T B, Yu T B, Liao Q H 2023 Results Phys. 52 106902Google Scholar

    [21]

    Wang L Q, Wu Y, Chen A X, Nie W J 2022 Results Phys. 41 105939Google Scholar

    [22]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202Google Scholar

    [23]

    Esteso V, Frustaglia D, Carretero‐Palacios S, Míguez H 2024 Adv. Phys. Res. 3 2300065Google Scholar

    [24]

    Rodriguez A W, McCauley A P, Woolf D, Capasso F, Joannopoulos J D, Johnson S G 2010 Phys. Rev. Lett. 104 160402Google Scholar

    [25]

    Ye Y Q, Hu Q, Zhao Q, Meng Y G 2018 Phys. Rev. B 98 035410Google Scholar

    [26]

    Liu X L, Zhang Z M 2016 Phys. Rev. Appl. 5 034004Google Scholar

    [27]

    Rahi S J, Kardar M, Emig T 2010 Phys. Rev. Lett. 105 070404Google Scholar

    [28]

    Rong J N, Chen L, Chang K 2021 Chin. Phys. Lett. 38 084501Google Scholar

    [29]

    Zhao R K, Li L, Yang S, Bao W, Xia Y, Ashby P, Wang Y, Zhang X 2019 Science 364 984Google Scholar

    [30]

    Ge L X, Shi X, Xu Z J, Gong K 2020 Phys. Rev. B 101 104107Google Scholar

    [31]

    Ge L X, Shi X, Liu L, Gong K 2020 Phys. Rev. B 102 075428Google Scholar

    [32]

    Toyama H, Ikeda T, Iizuka H 2023 Phys. Rev. B 108 245402Google Scholar

    [33]

    Ge L X, Liu K P, Gong K, Podgornik R 2024 Phys. Rev. Appl. 21 044040Google Scholar

    [34]

    Esteso V, Carretero-Palacios S, Míguez H 2019 J. Phys. Chem. Lett. 10 5856Google Scholar

    [35]

    Ge L X, Li B Z, Luo H, Gong K 2023 Phys. Rev. A 108 062814Google Scholar

    [36]

    Munkhbat B, Canales A, Kucukoz B, Baranov D G, Shegai T O 2021 Nature 597 214Google Scholar

    [37]

    Krasnov M, Mazitov A, Orekhov N, Baranov D G 2024 Phys. Rev. B 109 195411Google Scholar

    [38]

    Küçüköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J, Shegai T O 2024 Sci. Adv. 10 1825Google Scholar

    [39]

    Lifshitz E 1956 Sov. Phys. JETP-USSR 2 73

    [40]

    Van Zwol P, Palasantzas G 2010 Phys. Rev. A 81 062502Google Scholar

    [41]

    Rodriguez A W, Woolf D, McCauley A P, Capasso F, Joannopoulos J D, Johnson S G 2010 Phys. Rev. Lett. 105 060401Google Scholar

    [42]

    Munday J N, Capasso F, Parsegian V A 2009 Nature 457 170Google Scholar

    [43]

    Dou M F, Lou F, Boström M, Brevik I, Persson C 2014 Phys. Rev. B 89 201407Google Scholar

    [44]

    Sehmi H S, Langbein W, Muljarov E A 2017 Phys. Rev. B 95 115444Google Scholar

    [45]

    Fiedler J, Bostrom M, Persson C, Brevik I, Corkery R, Buhmann S Y, Parsons D F 2020 J Phys. Chem. B 124 3103Google Scholar

    [46]

    Wang Y F, Narayanan S R, Wu W 2017 ACS Nano 11 8421Google Scholar

  • [1] 刘雪, 王德华. 囚禁在电介质球形微腔中类氢原子的内部无序性. 物理学报, doi: 10.7498/aps.72.20222413
    [2] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性. 物理学报, doi: 10.7498/aps.70.20201796
    [3] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, doi: 10.7498/aps.69.20200562
    [4] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, doi: 10.7498/aps.68.20181645
    [5] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动. 物理学报, doi: 10.7498/aps.66.233701
    [6] 乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒. 悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象. 物理学报, doi: 10.7498/aps.65.136801
    [7] 李明华, 袁振洲, 许琰, 田钧方. 基于改进格子气模型的对向行人流分层现象的随机性研究. 物理学报, doi: 10.7498/aps.64.018903
    [8] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, doi: 10.7498/aps.63.164301
    [9] 吴丽君, 韩宇, 公卫江, 谭天亚. 量子点环嵌入Aharonov-Bohm干涉器中电子的退耦合态及反共振现象. 物理学报, doi: 10.7498/aps.60.107303
    [10] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, doi: 10.7498/aps.59.1780
    [11] 张 淼, 贾焕玉, 姬晓辉, 司 坤, 韦联福. 制备囚禁冷离子的振动压缩量子态. 物理学报, doi: 10.7498/aps.57.7650
    [12] 刘素华, 唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制. 物理学报, doi: 10.7498/aps.57.6162
    [13] 蔡承宇, 周旺民. Ge/Si半导体量子点的应变分布与平衡形态. 物理学报, doi: 10.7498/aps.56.4841
    [14] 谌雄文, 贺达江, 吴绍全, 宋克慧. 嵌入平行量子点的非平衡介观环路的极化电流. 物理学报, doi: 10.7498/aps.55.4287
    [15] 邬云文, 海文华. 共面两囚禁离子体系精确的量子运动. 物理学报, doi: 10.7498/aps.55.5721
    [16] 马 云, 傅立斌, 杨志安, 刘 杰. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性. 物理学报, doi: 10.7498/aps.55.5623
    [17] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究. 物理学报, doi: 10.7498/aps.54.2038
    [18] 马伟增, 季诚昌, 李建国, 许振明. 电磁悬浮熔炼的温度特性. 物理学报, doi: 10.7498/aps.52.834
    [19] 龙德顺, 宁西京. 二能级系统的布居囚禁现象. 物理学报, doi: 10.7498/aps.50.2335
    [20] 贾惟义, 熊季午. 悬浮颗粒散射引起的荧光增强现象. 物理学报, doi: 10.7498/aps.32.1471
计量
  • 文章访问数:  130
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-11-04
  • 上网日期:  2024-11-27

/

返回文章
返回