-
In this work, a low-frequency acoustic sensing scheme is proposed based on the structure of in-fiber Mach-Zehnder interferometer , in which the refractive index difference between fiber core and cladding is used to form a miniature Mach-Zehnder interferometer through fusion splicing of specialty optical fibers in a multi-mode-ultra-high numerical aperture-multi-mode configuration. This design achieves modal recombination between cladding and core modes, thereby effectively enhancing fiber bending sensitivity. The interferometer structure is then combined with a polyethylene terephthalate (PET) transducer diaphragm, enabling the sensing fiber to undergo curvature changes synchronously with the diaphragm under sound pressure, thereby indirectly increasing the area over which the fiber receives the acoustic field. When external acoustic pressure induces bending modulation on both the sensing fiber and transducer diaphragm, the differential strain distribution between the fiber cladding and core generates an optical path difference. This manifests itself in interference spectrum shifts, enabling the effective detection of low-frequency acoustic signals through demodulating the spectrum variations. In the paper, the theoretical framework for the acoustic sensing system is derived and validated experimentally. The results show that at 65 Hz, the system achieves a signal-to-noise ratio (SNR) of approximately 57 dB and a minimum detectable sound pressure of 267.9 ${\text{μ Pa/H}}{{\text{z}}^{{\text{1/2}}}}$at 65 Hz. In a frequency range of 50 Hz-500 Hz, the system exhibits good acoustic response, with an SNR consistently above 40 dB and a relatively flat signal output. This scheme significantly enhances the acoustic response capability of the sensing system, enabling the effective detection of low-frequency acoustic waves. Additionally, it features simple fabrication and low cost, showing great potential for the development of acoustic wave detection applications.
-
Keywords:
- optical fiber sensing /
- Mach-Zehnder interferometer /
- acoustic sensor /
- acoustic measurement
-
表 1 几种声传感方案的性能比较
Table 1. Performance comparison of several acoustic sensing systems.
传感结构 声压响应 信噪比/dB 最小探测声压/(${\text{μ Pa}} \cdot {\text{H}}{{\text{z}}^{{\text{ - 1/2}}}}$) Tapered Fiber[20] 36 mV/kPa 46.84 21.11×106
@2500 HzGold diaphragm-based FPI with a fiber-optic collimator[21] 12.6 mV/Pa 51 470@150 Hz FP etalon[22] 177.6 mV/Pa 12.7 530@1 kHz LPBG[15] 0.064 nm/kPa 40.6 331.9@550 Hz CMOS micromachined capacitive[23] — — 1.35×106
@2.4 MHzTwo-photon 3 D printed spring-based
Fabry–Pérot cavity resonator[24]0.0883 mV/Vpp 56.2 2390@75 kHz 本工作 0.0549 mV/Vpp 57.21 267.9@65 Hz -
[1] Zhao Y, Chen M Q, Xia F, Lv R Q 2018 Sensor Acoust. A-Phys. 270 162
[2] Shnaiderman R, Wissmeyer G, Seeger M, Soliman D, Estrada H, Razansky D, Rosenthal A, Ntziachristos V 2017 Optica 4 1180
Google Scholar
[3] Basiri-Esfahani S, Armin A, Forstner S, Bowen W P 2019 Nat. Commun. 10 132
Google Scholar
[4] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoustics 117 207
Google Scholar
[5] Jia J, Jiang Y, Zhang L, Gao H, Jiang L 2019 IEEE Sens. J. 19 7988
Google Scholar
[6] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 物理学报 71 094301
Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301
[7] Gong Z F, Chen K, Zhou X L, Yang Y, Zhao Z H, Zou H L, Yu Q X 2017 J. Lightwave Technol. 35 5276
Google Scholar
[8] Xu Y P, Zhang L, Gao S, Lu P, Mihailov S, Bao X Y 2017 Opt. Lett. 42 1353
Google Scholar
[9] Li Y, Tian J J, Fu Q, Sun Y X, Yao Y 2019 J. Lightwave Technol. 37 1160
Google Scholar
[10] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974
Google Scholar
[11] Wu Y, Yu C B, Wu F, Li C, Zhou J H, Gong Y, Rao Y J, Chen Y F 2017 J. Lightwave Technol. 35 4344
Google Scholar
[12] Feng G H, Chen W M 2016 Smart Mater. Struct. 25 055046
Google Scholar
[13] Wang S, Lu P, Zhang L, Liu D M, Zhang J S 2014 J. Mod. Opt. 61 1033
Google Scholar
[14] Tian J, Zuo Y W, Zhou K M, Yang Q, Hu X, Jiang Y 2024 J. Lightwave Technol. 42 2538
Google Scholar
[15] Fu X, Lu P, Ni W J, Liu L, Liao H, Jiang X Y, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 7102811
[16] Yang Q, Tian J, Hu X, Tian J J, He Q Q 2024 Photonics 11 363
Google Scholar
[17] Jiang B Q, Bai Z Y, Wang C L, Zhao Y H, Zhao J L, Zhang L, Zhou K M 2018 J. Lightwave Technol. 36 742
Google Scholar
[18] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481
Google Scholar
[19] Ren D P, Liu X, Zhang M Y, Gao R, Qi Z M 2021 IEEE Sens. J. 21 14655
Google Scholar
[20] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411
Google Scholar
[21] Xiang Z W, Dai W Y, Rao W Y, Cai X, Fu H Y 2021 IEEE Sens. J. 21 17882
Google Scholar
[22] Chen J M, Xue C Y, Zheng Y Q, Wu L Y, Chen C, Han Y 2021 Opt. Express 29 16447
Google Scholar
[23] Tang P K, Wang P H, Li M L, Lu M S C 2011 J. Micromech. Microeng. 21 025013
Google Scholar
[24] Wei H M, Wu Z L, Sun K X, Zhang H Y, Wang C, Wang K M, Yang T, Pang F F, Zhang X B, Wang T Y, Krishnaswamy S 2023 Photonics Res. 11 780
Google Scholar
Metrics
- Abstract views: 406
- PDF Downloads: 15
- Cited By: 0