Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature

Zhao Yong Cai Lu Li Xue-Gang Lü Ri-Qing

Citation:

A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature

Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In many fields, such as aerospace and marine environmental monitoring, magnetic field measurement is an important link. In recent years, optical fiber magnetic field sensor has received much attention because of its advantages such as small size, electromagnetic immunity, resistance to erosion and capability of remote sensing. In that case, magnetic fluid as a kind of medium between photons and magnetic field is widely used in optical fiber magnetic field sensors. Moreover, in the process of magnetic field measurement, disturbance introduced by temperature fluctuation always happens and brings uncertainty to the sensor. Temperature is also an important parameter in production process and needs to be measured. Therefore, designing a high-sensitive optical fiber sensor for simultaneously measuring magnetic field and temperature is a valuable work. In this paper, we present a high-sensitive hollow core fiber (HCF) interferometer for simultaneously measuring magnetic field and temperature. A segment of HCF filled with alcohol is inserted into single mode fiber (SMF) with 50 m offset at two splicing joints to guide light into the wall of HCF. And then this SMF-HCF-SMF structure is packaged by a capillary tube with full magnetic fluid (MF) inside it. Since the modal field area is large enough, the silica wall can support a series of guiding modes among which modal interference occurs and the interference spectrum can be recorded by an optical spectrum analyzer. Besides thermo-optic effect and thermal expansion effect of silica itself, the RI variations caused by thermo-optic effect of alcohol and MF as well as the magneto-optic effect of MF can also cause the phase difference of the guiding modes to change, thereby rendering interference dips movable. Thus, the sensitivity of temperature or magnetic field is higher than those given in some other previous studies. In addition, it is calculated that the effective RI sensitivities of guiding modes for inside and outside liquid are different because of the peculiar non-circular symmetry structure of HCF. So there is a possibility to find two dips in interference spectrum, which are formed with different modes and have various sensitivities to the variations of temperature and magnetic field. Finally, a sensitivity matrix can be built to demodulate those two parameters simultaneously. Experimental results show that within 20-58℃, the temperature sensitivities are 112 pm/℃ and 468 pm/℃ for dip1 and dip 2 whose magnetic field sensitivities are 37 pm/Oe and 82 pm/Oe within 0-169 Oe, respectively. The proposed sensor possesses high sensitivity and good mechanical strength, and can effectively eliminate the cross disturbances between temperature and magnetic field.
      Corresponding author: Zhao Yong, zhaoyong@ise.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61425003, 61273059, 51607028).
    [1]

    Zhao Y, Hu T 2010Sensors and Detection Technology (Beijing:China Machine Press) p106(in Chinese)[赵勇, 胡涛2010传感器与检测技术(北京:机械工业出版社)第106页]

    [2]

    Zhao Y, L R Q, Wang D, Wang Q 2015IEEE Photon. Techn. Lett. 27 1

    [3]

    Layeghi A, Latifi H, Frazao O 2014 IEEE Photon. Technol. Lett. 2619

    [4]

    Zhao Y, Wu D, L R Q 2015 IEEE Photon. Techn. Lett. 271

    [5]

    Lin W, Miao Y, Zhang H, Liu B, Liu Y, Song B 2015IEEE Photon. Techn. Lett. 27 4

    [6]

    Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 2713

    [7]

    Li E, Wang X, Zhang C 2006 Appl. Phys. Lett. 899

    [8]

    Wu Q, Semenova Y, Wang P, Farrell G 2011 Opt. Express 199

    [9]

    Liu Y, Liu Z, Chen S, Han M 2015 IEEE Photon. Techn. Lett. 274

    [10]

    Yang R, Yu Y S, Chen C, Xue Y, Zhang X, Guo J, Wang C, Zhu F, Zhang B, Chen Q, Sun H 2013Opt. Lett. 38 19

    [11]

    Wang H, Pu S, Wang N, Dong S, Huang J 2013 Opt. Lett. 3819

    [12]

    Dong S, Pu S, Wang H 2014IEEE Photon. Technol. Lett. 26 22

    [13]

    Song B, Miao Y, Lin W, Zhang H, Liu B, Wu J, Liu H, Yan D 2014 IEEE Photon. Technol. Lett. 2622

    [14]

    Liu T, Chen Y, Han Q, Lu X 2014IEEE Photon. J. 6 6

    [15]

    Zhao Z, Tang M, Gao F, Zhang P, Duan L, Zhu B, Fu S, Ouyang J, Wei H, Li J, Shum P P, Liu D 2014Opt. Express 22 22

    [16]

    Wu J, Miao Y, Song B, Lin W, Zhang H, Zhang K, Liu B, Yao J 2014Appl. Phys. Lett. 104 25

    [17]

    Zu P, Chan C C, Wen S L, Hu L, Jin Y, Liew H F, Chen L H, Wong W C, Dong X 2012IEEE Photon. J. 4 2

    [18]

    Dong S, Pu S, Huang J 2013Appl. Phys. Lett. 103 11

    [19]

    Pu S, Dong S 2014IEEE Photon. J. 6 4

    [20]

    Deng M, Liu D, Li D 2014Sens. Actuat. A:Phys. 211 5

    [21]

    Miao Y, Wu J, Lin W, Song B, Zhang H, Zhang K, Liu B, Yao J 2014J. Lightwave Technol. 32 23

    [22]

    Li L, Li X, Xie Z, Liu D 2012Opt. Express 20 10

    [23]

    Geng Y, Li X, Tan X, Deng Y, Yu Y 2011IEEE Sens. J. 11 11

    [24]

    Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y 2008Opt. Express 16 15

    [25]

    Zhao Y, Cai L, Li X G 2015IEEE Photon. Technol. Lett. 27 12

    [26]

    Coelho L, Frazo O, Kobelke J, Schuster K, Santos J L 2011Opt. Eng. 50 10

    [27]

    Zhao Y, Wu D, Lv R Q, Ying Y 2014IEEE Trans. Magn. 50 8

  • [1]

    Zhao Y, Hu T 2010Sensors and Detection Technology (Beijing:China Machine Press) p106(in Chinese)[赵勇, 胡涛2010传感器与检测技术(北京:机械工业出版社)第106页]

    [2]

    Zhao Y, L R Q, Wang D, Wang Q 2015IEEE Photon. Techn. Lett. 27 1

    [3]

    Layeghi A, Latifi H, Frazao O 2014 IEEE Photon. Technol. Lett. 2619

    [4]

    Zhao Y, Wu D, L R Q 2015 IEEE Photon. Techn. Lett. 271

    [5]

    Lin W, Miao Y, Zhang H, Liu B, Liu Y, Song B 2015IEEE Photon. Techn. Lett. 27 4

    [6]

    Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 2713

    [7]

    Li E, Wang X, Zhang C 2006 Appl. Phys. Lett. 899

    [8]

    Wu Q, Semenova Y, Wang P, Farrell G 2011 Opt. Express 199

    [9]

    Liu Y, Liu Z, Chen S, Han M 2015 IEEE Photon. Techn. Lett. 274

    [10]

    Yang R, Yu Y S, Chen C, Xue Y, Zhang X, Guo J, Wang C, Zhu F, Zhang B, Chen Q, Sun H 2013Opt. Lett. 38 19

    [11]

    Wang H, Pu S, Wang N, Dong S, Huang J 2013 Opt. Lett. 3819

    [12]

    Dong S, Pu S, Wang H 2014IEEE Photon. Technol. Lett. 26 22

    [13]

    Song B, Miao Y, Lin W, Zhang H, Liu B, Wu J, Liu H, Yan D 2014 IEEE Photon. Technol. Lett. 2622

    [14]

    Liu T, Chen Y, Han Q, Lu X 2014IEEE Photon. J. 6 6

    [15]

    Zhao Z, Tang M, Gao F, Zhang P, Duan L, Zhu B, Fu S, Ouyang J, Wei H, Li J, Shum P P, Liu D 2014Opt. Express 22 22

    [16]

    Wu J, Miao Y, Song B, Lin W, Zhang H, Zhang K, Liu B, Yao J 2014Appl. Phys. Lett. 104 25

    [17]

    Zu P, Chan C C, Wen S L, Hu L, Jin Y, Liew H F, Chen L H, Wong W C, Dong X 2012IEEE Photon. J. 4 2

    [18]

    Dong S, Pu S, Huang J 2013Appl. Phys. Lett. 103 11

    [19]

    Pu S, Dong S 2014IEEE Photon. J. 6 4

    [20]

    Deng M, Liu D, Li D 2014Sens. Actuat. A:Phys. 211 5

    [21]

    Miao Y, Wu J, Lin W, Song B, Zhang H, Zhang K, Liu B, Yao J 2014J. Lightwave Technol. 32 23

    [22]

    Li L, Li X, Xie Z, Liu D 2012Opt. Express 20 10

    [23]

    Geng Y, Li X, Tan X, Deng Y, Yu Y 2011IEEE Sens. J. 11 11

    [24]

    Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y 2008Opt. Express 16 15

    [25]

    Zhao Y, Cai L, Li X G 2015IEEE Photon. Technol. Lett. 27 12

    [26]

    Coelho L, Frazo O, Kobelke J, Schuster K, Santos J L 2011Opt. Eng. 50 10

    [27]

    Zhao Y, Wu D, Lv R Q, Ying Y 2014IEEE Trans. Magn. 50 8

  • [1] Wei Chao, Yu Xuan, Lei Cheng, Wang Zi-Yu, Liu Sheng, Wang Du. Vibrational thermal pool multi-level theoretical model and design simulation of HBr-filled hollow-core fiber gas laser. Acta Physica Sinica, 2024, 73(15): 154201. doi: 10.7498/aps.73.20240428
    [2] Liu Yu, Ren Guo-Bin, Jin Wen-Xing, Wu Yue, Yang Yu-Guang, Jian Shui-Sheng. Enhanced selfintegration algorithm for fiber torsion sensor based acoustically-induced fiber grating. Acta Physica Sinica, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [3] Li Zheng-Ying, Zhou Lei, Sun Wen-Feng, Li Zi-Mo, Wang Jia-Qi, Guo Hui-Yong, Wang Hong-Hai. High speed and high precision demodulation method of fiber grating based on dispersion effect. Acta Physica Sinica, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [4] Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi. Principle of Brillouin dynamic grating and its applications in optical fiber sensing. Acta Physica Sinica, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [5] Wang Min, Liu Fu-Fei, Zhou Xian, Dai Yu-Tang, Yang Ming-Hong. Optical fiber sensing technologies based on femtosecond laser micromachining and sensitive films. Acta Physica Sinica, 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [6] Liu Tie-Gen, Yu Zhe, Jiang Jun-Feng, Liu Kun, Zhang Xue-Zhi, Ding Zhen-Yang, Wang Shuang, Hu Hao-Feng, Han Qun, Zhang Hong-Xia, Li Zhi-Hong. Advances of some critical technologies in discrete and distributed optical fiber sensing research. Acta Physica Sinica, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [7] He Zu-Yuan, Liu Qing-Wen, Chen Jia-Geng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [8] Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu. Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect. Acta Physica Sinica, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [9] Wang Ting-Ting, Ge Yi-Xian, Chang Jian-Hua, Ke Wei, Wang Ming. Refractive index sensing characteristic of a hybrid-Fabry-Pérot interferometer based on an in-fiber ellipsoidal cavity. Acta Physica Sinica, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [10] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [11] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [12] Miao Yin-Ping, Yao Jian-Quan. Temperature sensitivity of microstructured optical fiber filled with ferrofluid. Acta Physica Sinica, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [13] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [14] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [15] Zhu Tao, Song Yun, Rao Yun-Jiang, Zhu Yong. Theory and fabrication of long period fiber grating with rotary refractive index modulation induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [16] Liu Gui-Xiong, Pu Yao-Ping, Xu Chen. Definition of Helmholtz and Kelvin forces in magnetic fluids. Acta Physica Sinica, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [17] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju, Wang Jiu-Ling. Study on characteristics of a CO2-laser-induced ultra-long-period fiber grating. Acta Physica Sinica, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [18] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju. A high sensitivity fiber-optic torsion sensor based on a novel ultra long-period fiber grating. Acta Physica Sinica, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] Qiao Xue-Guang, Jia Zhen-An, Fu Hai-Wei, Li Ming, Zhou Hong. Theory and experiment about in-fiber Bragg grating temperature sensing. Acta Physica Sinica, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
Metrics
  • Abstract views:  7325
  • PDF Downloads:  700
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2016
  • Accepted Date:  07 December 2016
  • Published Online:  05 April 2017

/

返回文章
返回