-
Fiber Bragg grating sensor is widely used in military, construction, transportation, aviation and other fields due to its advantages in high sensitivity, high precision, high multiplexing and small volume. However, in some special fields such as ultrasonic flaw detection, high-speed vibration and aeroengine monitoring, the signals are rapidly changing, thus requiring high speed sampling. But the demodulation speed of traditional fiber Bragg grating demodulation techniques is hardly to satisfy the requirements, which seriously limits the application of fiber Bragg grating sensor in these fields. To solve this problem, in this paper we propose a dispersion compensation fiber(DCF)-single mode fiber(SMF) dual-channel demodulation method. Based on the SMF and the DCF with the characteristics of positive and negative dispersion coefficients in the anomalous dispersion region respectively, and combining with the optical time domain reflection technology, high speed and high precision demodulation of fiber grating can be realized. This system adopts the whole fiber structure without wavelength scanning, and the grating wavelength and position information can be obtained according to the pulse delay difference under a single optical pulse. There are three factors that quite influence the system accuracy and need to be solved: the grating space disturbance which is caused by the temperature change of the sensor network fiber; the dual-channel length disturbance caused by the DCF-SMF dual-channel temperature change; the dispersion disturbance caused by the inaccurate dispersion difference of the DCF-SMF. By constructing the DCF-SMF dual-channel, adopting the reference grating and introducing the dispersion difference correction model, these influence factors are solved. The case of temperature disturbance elimination is tested by the 5-75℃ temperature experiments. And the results are as follows: when the temperature of the sensor network fiber changes, the standard deviation of this dual-channel demodulation system is 16.8 pm, while only using the DCF single-channel to form the demodulation system, the standard deviation is 3614 pm. And when the DCF-SMF dual-channel is disturbed by temperature, the standard deviation is 11.9 pm. For a long time demodulation under constant temperature, the standard deviation of this system is 6.4 pm. Thus the influences of the sensor network fiber temperature change and the dual-channel temperature change on the system demodulation accuracy are effectively reduced. The feasibility and accuracy of this method are also verified by the strain experiment. Experimental results show that the highest demodulation rate of this method is 1 MHz, while the linearity can be up to 0.9998, and the accuracy is about 8.5 pm. So the system with the dispersion difference correction model has a high precision. Therefore, this novel demodulation method has advantages of high speed and high precision, good stability and large dynamic range, and it is very applicable to quasi-distributed fiber Bragg grating sensing system.
-
Keywords:
- optical fiber sensing /
- single mode fiber /
- dispersion compensation fiber /
- high speed and high precision
[1] Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]
[2] Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206
[3] Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429
[4] Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]
[5] Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552
[6] Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310
[7] van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402
[8] Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]
[9] Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]
[10] Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]
[11] Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207
[12] Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595
[13] Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]
[14] Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]
[15] Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]
[16] Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]
-
[1] Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]
[2] Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206
[3] Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429
[4] Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]
[5] Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552
[6] Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310
[7] van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402
[8] Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]
[9] Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]
[10] Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]
[11] Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207
[12] Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595
[13] Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]
[14] Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]
[15] Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]
[16] Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]
Catalog
Metrics
- Abstract views: 7405
- PDF Downloads: 399
- Cited By: 0