-
介绍了一种简单且灵敏度较高的Mach-Zehnder干涉湿度传感器.将单模光纤和多模光纤渐变熔接光纤锥,色散补偿光纤被熔接在两个多模渐变光纤之间,形成了单模光纤-光纤锥-多模渐变光纤-色散补偿光纤-多模渐变光纤-光纤锥-单模光纤结构的传感器.光纤锥起到了增加包层模能量的作用,两个多模渐变光纤节点作为光耦合器,从而形成光纤Mach-Zehnder干涉仪.外界环境湿度的变化,将使得传感器透射谱能量发生变化,通过测量干涉谱波峰峰值能量实现对湿度的测量.实验结果表明干涉谱波峰峰值能量与环境湿度之间存在良好的线性关系.当环境湿度在35% RH85% RH范围内变化,一段由20 mm色散补偿光纤组成的传感器,其灵敏度为-0.0668 dB/% RH,相关度为0.995.该传感器结构紧凑、尺寸小、制造工艺简单,这使其可以被广泛用于湿度测量.
-
关键词:
- 湿度传感器 /
- 色散补偿光纤 /
- 多模渐变光纤 /
- Mach-Zehnder干涉仪
A simple and high sensitivity optical fiber relative humidity (RH) sensor based on Mach-Zehnder interferometer (MZI) is proposed and demonstrated in this paper. A single-mode fiber and a graded-index multimode fiber are connected by a fiber taper to form a section. Then an uncoated dispersion compensation fiber is sandwiched between two short sections of the graded-index multimode fiber.Therefore, a sensing structure is set up as a single-mode fiber-taper fiber-graded-index multimode fiber-dispersion compensation fiber-graded-index multimode fiber-taper laser-single-mode fiber. The taper fiber is used to augment the energy of the cladding mode. The two nodes of the graded-index multimode fiber can be looked as a mode coupler. Thus an MZI is constructed. Since the external RH change can make the transmission spectrum energy changed, we can obtain the RH by detecting the peak energy variation of the interference pattern induced by the evanescent-field interaction. The experimental results show that the peak energy changes linearly with surrounding relative humidity. Under the condition of 35%Rh-85%RH, the sensitivity of the sensor with a 20 mm dispersion compensation fiber is -0.0668 dB/%RH and the linearity is 0.995. Moreover, temperature response characteristics are investigated. Experimental results suggest that the transmission spectrum energy of the sensor is insensitive to temperature. With temperature increasing, the transmission spectrum presents obviously a red-shift, yet the peak energy of the monitoring point barely moves, which demonstrates its potential for measuring simultaneously RH and temperature. The proposed sensor has a small size and simple manufacturing process, which can make it widely used to measure RH.-
Keywords:
- humidity sensors /
- dispersion compensation fiber /
- graded-index multimode fiber /
- Mach-Zehnder interferometer
[1] Kolpakov S A, Gordon N T, Mou C B, Zhou K M 2014 Sensors 14 3986
[2] Xu W, Huang W B, Huang X G, Yu C Y 2013 Opt. Fiber Technol. 19 583
[3] Xie W J, Yang M, Cheng Y, Li D, Zhang Y, Zhuang Z 2014 Opt. Fiber Technol. 20 314
[4] Sun H, Zhang X, Yuan L, Zhou L, Qiao X, Hu M 2014 IEEE Sens. J. 15 2891
[5] Su D, Qiao X G, Rong Q Z, Sun H, Zhang J, Bai Z Y, Du Y Y, Feng D Y, Wang Y P, Hu M L, Feng Z Y 2014 Opt. Commun. 311 107
[6] Lin Y, Gong Y, Wu Y, Wu H 2015 Photon. Sens. 5 60
[7] Kronenberg P, Rastogi P K, Giaccari P, Limberger H G 2002 Opt. Lett. 27 1385
[8] Shao M, Qiao X, Fu H, Zhao N, Liu Q, Gao H 2013 IEEE Sens. J. 13 2026
[9] Lokman A, Arof H, Harun S W, Harith Z, Rafaie H A, Nor R M 2016 IEEE Sens. J. 16 312
[10] Yu X J, Zhang J T, Chen X F, Liu S C 2014 Adv. Mater. Res. 981 616
[11] Shao M, Qiao X, Fu H W 2013 IEEE Sens. J. 13 2026
[12] Mather J, Semenova Y, Rajan G, Farrell G 2010 Electron. Lett. 46 1341
[13] Zhang Z F, Tao X M 2012 J. Lightwave Technol. 30 841
[14] Liu H F, Miao Y P, Liu B, Lin W, Zhang H, Song B B, Huang M G, Lin L 2015 IEEE Sens. J. 15 3424
[15] Mathew J, Semenova Y, Farrell G 2012 IEEE J. Sel. Top. Quantum Electron. 18 1553
[16] Zhang X K, Ye X Q, Chen Z D 2011 Acta Opt. Sin. 31 33 (in Chinese)[张小康, 叶晓靖, 陈志东 2011 光学学报 31 33]
[17] Zhang Y S, Qiao X G, Shao M, Fu H W, Zhao N 2015 Acta Photon. Sin. 44 115 (in Chinese)[张芸山, 乔学光, 邵敏, 傅海威, 李辉栋, 赵娜 2015 光子学报 44 115]
[18] Yeo T L, Sun T, Grattan K T V, Parry D, Lade R, Powell B D 2005 IEEE Sens. J. 5 1082
[19] Wu Q, Semenova Y L, Mathew J 2011 Opt. Lett. 36 1752
[20] Shao M, Qiao X G, Fu H W, Li H D, Zhao J L, Li Y A 2014 Opt. Laser Technol. 52 86
[21] Liu N, Hu M L, Sun H, Gang T T, Yang Z H, Rong Q Z, Qiao X G 2016 Opt. Commun. 367 1
[22] Yan X, Fu H W, Li H D, Qiao X G 2016 Chin. Opt. Lett. 14 030603
[23] Huan X F, Sheng D R, Cen K F, Zhou H 2007 Sensors Actuat. B: Chem. 127 518
-
[1] Kolpakov S A, Gordon N T, Mou C B, Zhou K M 2014 Sensors 14 3986
[2] Xu W, Huang W B, Huang X G, Yu C Y 2013 Opt. Fiber Technol. 19 583
[3] Xie W J, Yang M, Cheng Y, Li D, Zhang Y, Zhuang Z 2014 Opt. Fiber Technol. 20 314
[4] Sun H, Zhang X, Yuan L, Zhou L, Qiao X, Hu M 2014 IEEE Sens. J. 15 2891
[5] Su D, Qiao X G, Rong Q Z, Sun H, Zhang J, Bai Z Y, Du Y Y, Feng D Y, Wang Y P, Hu M L, Feng Z Y 2014 Opt. Commun. 311 107
[6] Lin Y, Gong Y, Wu Y, Wu H 2015 Photon. Sens. 5 60
[7] Kronenberg P, Rastogi P K, Giaccari P, Limberger H G 2002 Opt. Lett. 27 1385
[8] Shao M, Qiao X, Fu H, Zhao N, Liu Q, Gao H 2013 IEEE Sens. J. 13 2026
[9] Lokman A, Arof H, Harun S W, Harith Z, Rafaie H A, Nor R M 2016 IEEE Sens. J. 16 312
[10] Yu X J, Zhang J T, Chen X F, Liu S C 2014 Adv. Mater. Res. 981 616
[11] Shao M, Qiao X, Fu H W 2013 IEEE Sens. J. 13 2026
[12] Mather J, Semenova Y, Rajan G, Farrell G 2010 Electron. Lett. 46 1341
[13] Zhang Z F, Tao X M 2012 J. Lightwave Technol. 30 841
[14] Liu H F, Miao Y P, Liu B, Lin W, Zhang H, Song B B, Huang M G, Lin L 2015 IEEE Sens. J. 15 3424
[15] Mathew J, Semenova Y, Farrell G 2012 IEEE J. Sel. Top. Quantum Electron. 18 1553
[16] Zhang X K, Ye X Q, Chen Z D 2011 Acta Opt. Sin. 31 33 (in Chinese)[张小康, 叶晓靖, 陈志东 2011 光学学报 31 33]
[17] Zhang Y S, Qiao X G, Shao M, Fu H W, Zhao N 2015 Acta Photon. Sin. 44 115 (in Chinese)[张芸山, 乔学光, 邵敏, 傅海威, 李辉栋, 赵娜 2015 光子学报 44 115]
[18] Yeo T L, Sun T, Grattan K T V, Parry D, Lade R, Powell B D 2005 IEEE Sens. J. 5 1082
[19] Wu Q, Semenova Y L, Mathew J 2011 Opt. Lett. 36 1752
[20] Shao M, Qiao X G, Fu H W, Li H D, Zhao J L, Li Y A 2014 Opt. Laser Technol. 52 86
[21] Liu N, Hu M L, Sun H, Gang T T, Yang Z H, Rong Q Z, Qiao X G 2016 Opt. Commun. 367 1
[22] Yan X, Fu H W, Li H D, Qiao X G 2016 Chin. Opt. Lett. 14 030603
[23] Huan X F, Sheng D R, Cen K F, Zhou H 2007 Sensors Actuat. B: Chem. 127 518
计量
- 文章访问数: 6907
- PDF下载量: 403
- 被引次数: 0