搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色散效应的光纤光栅高速高精度解调方法研究

李政颖 周磊 孙文丰 李子墨 王加琪 郭会勇 王洪海

引用本文:
Citation:

基于色散效应的光纤光栅高速高精度解调方法研究

李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海

High speed and high precision demodulation method of fiber grating based on dispersion effect

Li Zheng-Ying, Zhou Lei, Sun Wen-Feng, Li Zi-Mo, Wang Jia-Qi, Guo Hui-Yong, Wang Hong-Hai
PDF
导出引用
  • 利用普通单模光纤(SMF)与色散补偿光纤(DCF)分别具有正色散和负色散系数特性,实现光纤光栅阵列的高速高精度解调.系统采用全光纤结构,仅需发出单一高速光脉冲,即可根据反射光脉冲时延差同时获取各个光栅的波长与位置信息,大幅提高了光纤光栅解调速度;通过建立DCF-SMF双通道和色散差矫正模型,削弱了温度变化及色散值误差对系统解调精度的影响.实验表明,本方法解调速率可达1 MHz,解调过程受传感网络光纤及双通道温变影响较小,具有良好稳定性及高精度;5–75℃温度扰动实验中,传感网络传输光纤温变时系统解调均方差16.8 pm,DCF-SMF双通道受温度扰动时系统解调均方差为11.9 pm,恒温下系统长时间解调时均方差为6.4 pm;应力实验中,解调线性度可达0.9998,解调精度约为8.5 pm.
    Fiber Bragg grating sensor is widely used in military, construction, transportation, aviation and other fields due to its advantages in high sensitivity, high precision, high multiplexing and small volume. However, in some special fields such as ultrasonic flaw detection, high-speed vibration and aeroengine monitoring, the signals are rapidly changing, thus requiring high speed sampling. But the demodulation speed of traditional fiber Bragg grating demodulation techniques is hardly to satisfy the requirements, which seriously limits the application of fiber Bragg grating sensor in these fields. To solve this problem, in this paper we propose a dispersion compensation fiber(DCF)-single mode fiber(SMF) dual-channel demodulation method. Based on the SMF and the DCF with the characteristics of positive and negative dispersion coefficients in the anomalous dispersion region respectively, and combining with the optical time domain reflection technology, high speed and high precision demodulation of fiber grating can be realized. This system adopts the whole fiber structure without wavelength scanning, and the grating wavelength and position information can be obtained according to the pulse delay difference under a single optical pulse. There are three factors that quite influence the system accuracy and need to be solved: the grating space disturbance which is caused by the temperature change of the sensor network fiber; the dual-channel length disturbance caused by the DCF-SMF dual-channel temperature change; the dispersion disturbance caused by the inaccurate dispersion difference of the DCF-SMF. By constructing the DCF-SMF dual-channel, adopting the reference grating and introducing the dispersion difference correction model, these influence factors are solved. The case of temperature disturbance elimination is tested by the 5-75℃ temperature experiments. And the results are as follows: when the temperature of the sensor network fiber changes, the standard deviation of this dual-channel demodulation system is 16.8 pm, while only using the DCF single-channel to form the demodulation system, the standard deviation is 3614 pm. And when the DCF-SMF dual-channel is disturbed by temperature, the standard deviation is 11.9 pm. For a long time demodulation under constant temperature, the standard deviation of this system is 6.4 pm. Thus the influences of the sensor network fiber temperature change and the dual-channel temperature change on the system demodulation accuracy are effectively reduced. The feasibility and accuracy of this method are also verified by the strain experiment. Experimental results show that the highest demodulation rate of this method is 1 MHz, while the linearity can be up to 0.9998, and the accuracy is about 8.5 pm. So the system with the dispersion difference correction model has a high precision. Therefore, this novel demodulation method has advantages of high speed and high precision, good stability and large dynamic range, and it is very applicable to quasi-distributed fiber Bragg grating sensing system.
      通信作者: 李政颖, zhyli@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575149)资助的课题.
      Corresponding author: Li Zheng-Ying, zhyli@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61575149).
    [1]

    Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]

    [2]

    Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206

    [3]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429

    [4]

    Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]

    [5]

    Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552

    [6]

    Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310

    [7]

    van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402

    [8]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]

    [9]

    Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]

    [10]

    Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]

    [11]

    Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207

    [12]

    Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595

    [13]

    Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]

    [14]

    Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]

    [15]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]

    [16]

    Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]

  • [1]

    Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]

    [2]

    Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206

    [3]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429

    [4]

    Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]

    [5]

    Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552

    [6]

    Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310

    [7]

    van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402

    [8]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]

    [9]

    Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]

    [10]

    Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]

    [11]

    Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207

    [12]

    Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595

    [13]

    Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]

    [14]

    Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]

    [15]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]

    [16]

    Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]

  • [1] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [2] 程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器. 物理学报, 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677
    [3] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [4] 王闵, 刘复飞, 周贤, 戴玉堂, 杨明红. 基于光纤微结构加工和敏感材料物理融合的光纤传感技术. 物理学报, 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [5] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [6] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [7] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [8] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [10] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [11] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [12] 马海强, 李泉跃, 汪龙, 韦克金, 张勇, 焦荣珍. 一种高速率、高精度的全光纤偏振控制方法. 物理学报, 2013, 62(8): 084217. doi: 10.7498/aps.62.084217
    [13] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [14] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [15] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [16] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [17] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [18] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [19] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  3751
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-24
  • 修回日期:  2016-09-28
  • 刊出日期:  2017-01-05

基于色散效应的光纤光栅高速高精度解调方法研究

  • 1. 武汉理工大学, 光纤传感技术与信息处理教育部重点实验室, 武汉 430070;
  • 2. 武汉理工大学, 光纤传感技术国家工程实验室, 武汉 430070
  • 通信作者: 李政颖, zhyli@whut.edu.cn
    基金项目: 国家自然科学基金(批准号:61575149)资助的课题.

摘要: 利用普通单模光纤(SMF)与色散补偿光纤(DCF)分别具有正色散和负色散系数特性,实现光纤光栅阵列的高速高精度解调.系统采用全光纤结构,仅需发出单一高速光脉冲,即可根据反射光脉冲时延差同时获取各个光栅的波长与位置信息,大幅提高了光纤光栅解调速度;通过建立DCF-SMF双通道和色散差矫正模型,削弱了温度变化及色散值误差对系统解调精度的影响.实验表明,本方法解调速率可达1 MHz,解调过程受传感网络光纤及双通道温变影响较小,具有良好稳定性及高精度;5–75℃温度扰动实验中,传感网络传输光纤温变时系统解调均方差16.8 pm,DCF-SMF双通道受温度扰动时系统解调均方差为11.9 pm,恒温下系统长时间解调时均方差为6.4 pm;应力实验中,解调线性度可达0.9998,解调精度约为8.5 pm.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回