-
In the last decade, the vortex beams have received lots of attention for their orbital angular momentum.When they are applied to optical fiber communication field,the data channels will increase and information propagation speed will be effectively improved. Recently, researchers have shown the capabilities of long length stably propagation, nonlinear frequency conversion and mode division multiplexing of vortex modes in a ring fiber. Due to the photonic crystal fiber(PCF) having very flexible design degrees of freedom, it will enable a wide range of propagation properties. In this paper, a SiO2 air-hole ring PCF is proposed for separation and propagation of optical vortex modes.By using COMSOL Multiphysics software,the vortex modes(TE01, HE21± and TM01) are simulated and calculated. The differences in effective refractive index between them are 4.59×10-4 and 3.62×10-4 respectively. One can analyze the propagation properties of vortex beams in the ring PCF by changing the size of first layer air hole radius and air hole pitch. When the incident light wavelength of TE01 mode ranges from 1650 nm to 1950 nm, this ring PCF can achieve a total dispersion variation between 44.18 to 45.83 ps·nm-1·km-1, which is tend to be flat. When incident light wavelength is 1550 nm, the nonlinear coefficient of TE01 mode vortex light is 1.37 W-1·km-1. Due to the fact that long wavelength light is easier to leakage through the cladding than the short wavelength light, the confinement loss increases with the wavelength. When incident light wavelength is 2000 nm, there is still an eight-orders-of-magnitude of the low confinement loss. Theoretically, flat dispersion and low loss vortex beams in this fiber can be beneficial to propagating stably, and the vortex modes lay the foundation for long distance propagation in the optical fiber. In the future, this ring PCF will be used in optical fiber communication field and applications in aspects such as continuous spectrum research, which can make it have immense advantage over traditional fibers.
-
Keywords:
- photonic crystal fiber /
- vortex beams /
- dispersion /
- nonlinear coefficient
[1] Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese)[姜凌红, 侯蓝田, 杨倩倩2010物理学报59 4726]
[2] Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403
[3] Swartzlander G, Law C 1992 Phys. Rev. Lett. 69 2503
[4] Hou J, Wang L B, Yang C Y, Chen S P 2014 J. South-Central Univ. National.(Nat. Sci. Edition)) 33 67 (in Chinese)[侯金, 王林波, 杨春勇, 陈少平2014中南民族大学学报(自然科学版) 33 67]
[5] Ramachandran S, Kristensen P, Yan M 2009 Opt. Lett. 34 2525
[6] Ramachandran S, Kristensen P 2013 Nanophotonics 2 455
[7] Wong G, Kang M, Lee H, Biancalana F, Conti C, Weiss T, Russell P 2012 Science 337 446
[8] Yue Y, Zhang L, Yan Y, Ahmed N, Yang J, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889
[9] Ung B, Wan L, Brunet C, Vaity P, Jin C, Rusch L, Messaddeq Y, La Rochelle S 2014 Optical Fiber Communication Conference San Francisco, USA, March 9-13, 2014, pTu3K.4
[10] Snyder A W, Love J D 1983 Optical Waveguide Theory(London:New York:Chapman and Hall) p239
[11] Gloge D 1971 Appl. Opt. 10 2252
[12] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545
[13] Hou Y, Zhou G Y, Hou L T, Jiang L H 2010 Chin. J. Lasers 37 1068 (in Chinese)[侯宇, 周桂耀, 侯蓝田, 姜凌红2010中国激光37 1068]
[14] Haxha S, Ademgil H 2008 Opt. Commun. 281 278
[15] Li J Y, Peng J G, Jiang Z W, Chen W, Li H Q, Luo W Y 2008 Study Opt. Commun. 4 1 (in Chinese)[李进延, 彭景刚, 蒋作文, 陈伟, 李海清, 罗文勇2008光通信研究4 1]
[16] Yamamoto T, Kubota H, Kawanishiet S 2003 Opt. Express 11 1537
-
[1] Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese)[姜凌红, 侯蓝田, 杨倩倩2010物理学报59 4726]
[2] Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403
[3] Swartzlander G, Law C 1992 Phys. Rev. Lett. 69 2503
[4] Hou J, Wang L B, Yang C Y, Chen S P 2014 J. South-Central Univ. National.(Nat. Sci. Edition)) 33 67 (in Chinese)[侯金, 王林波, 杨春勇, 陈少平2014中南民族大学学报(自然科学版) 33 67]
[5] Ramachandran S, Kristensen P, Yan M 2009 Opt. Lett. 34 2525
[6] Ramachandran S, Kristensen P 2013 Nanophotonics 2 455
[7] Wong G, Kang M, Lee H, Biancalana F, Conti C, Weiss T, Russell P 2012 Science 337 446
[8] Yue Y, Zhang L, Yan Y, Ahmed N, Yang J, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889
[9] Ung B, Wan L, Brunet C, Vaity P, Jin C, Rusch L, Messaddeq Y, La Rochelle S 2014 Optical Fiber Communication Conference San Francisco, USA, March 9-13, 2014, pTu3K.4
[10] Snyder A W, Love J D 1983 Optical Waveguide Theory(London:New York:Chapman and Hall) p239
[11] Gloge D 1971 Appl. Opt. 10 2252
[12] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545
[13] Hou Y, Zhou G Y, Hou L T, Jiang L H 2010 Chin. J. Lasers 37 1068 (in Chinese)[侯宇, 周桂耀, 侯蓝田, 姜凌红2010中国激光37 1068]
[14] Haxha S, Ademgil H 2008 Opt. Commun. 281 278
[15] Li J Y, Peng J G, Jiang Z W, Chen W, Li H Q, Luo W Y 2008 Study Opt. Commun. 4 1 (in Chinese)[李进延, 彭景刚, 蒋作文, 陈伟, 李海清, 罗文勇2008光通信研究4 1]
[16] Yamamoto T, Kubota H, Kawanishiet S 2003 Opt. Express 11 1537
Catalog
Metrics
- Abstract views: 7542
- PDF Downloads: 471
- Cited By: 0