-
In an optical fiber communication system, vortex beams have aroused great interest in the last several decades. Vortex beams possess many intriguing properties. For example, they have the ability to carry orbital angular momentum (OAM) which is mutually orthogonal. The OAM is a fundamental physical quantity of light which can be used as information carriers for transmission channel of optical fiber. Combined with the existing multiplexing techniques such as wavelength division multiplexing technique, advanced multilevel amplitude modulation formats, etc., the vortex beams provide an alternative to the increase of the transmission capacity and spectral efficiency of the optical fiber transmission system. Recently, long-length transmission of vortex-beam in optical fiber has been realized and there have also occurred some new designs of optical fiber on vortex beams, such as air-core ring shaped fiber, graded index vortex fiber, multi-ring fiber, and supermode fiber. Photonic crystal fiber (PCF) is flexible in design. Therefore, it is easy to regulate the transmission performance of PCF by adjusting the radius and the pitch of the air holes and so on. In this paper, we propose a newly designed sixfold photonic quasi-crystal fiber (SPQCF) to transmit vortex beams stably. Transmission characteristics of this newly designed fiber are simulated and calculated by using COMSOL multiphysics software. When the wavelength of the incident light is 1550 nm, the effective index difference between the vortex modes in a group is more than 10–4 which is large enough to preclude the LP modes from being formed, and to transmit 7 vector modes (10 OAM modes). Changing the radius and pitch of the air holes, we can regulate the dispersion characteristic and confinement loss of the SPQCF flexibly. At 1550 nm, the confinement loss of the SPQCF maintains 10–8−10–7 which is low enough to confine the vortex beams in the fiber core. When the incident light wavelength of HE21 ranges from 1500 nm to 1800 nm (r0 = 1.9 μm), the dispersion coefficient of the SPQCF is between 63.51−65.42 ps·nm–1·km–1 which tends to be flat. By changing r0, the flat trend is adjusted to different wavelength range. This dispersion characteristic possesses great potential for the transmission of optical solitons. The effective mode area (HE21) is about 40 μm2 and the nonlinear coefficient (HE21) is maintained on the order of 10–3 between 1500−1600 nm. These features suppress the generation of nonlinear effect in the fiber and benefit the transmission of vortex beams. The stable transmission distance is longer than 1 km. In summary, we design a new type of PCF featuring quasi-crystal structure which has a ring shaped fiber core and supports the transmission of vortex beams stably.
-
Keywords:
- photonic quasi-crystal fiber /
- vortex beams /
- dispersion /
- confinement loss
[1] Ramachandran S, Kristensen P 2013 Nanophotonics 2 455
[2] Curtis J E, Grier D G 2003 Opt. Lett. 28 872Google Scholar
[3] Tabosa J W R, Petrov D V 1999 Phys. Rev. Lett. 83 4967Google Scholar
[4] Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar
[5] Brunet C, Rusch L A 2016 Opt. Fiber Technol. 31 172Google Scholar
[6] Wong K L G G, Xi X, Kang M S, Lee H W, Russell P 2012 Science 337 446Google Scholar
[7] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar
[8] Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar
[9] Allen L, Beijersbergen M W, Spreeuw R, Woerdman J 1992 Phys. Rev. A 45 8185Google Scholar
[10] McGloin D, Simpson N B, Padgett M J 1998 Appl. Opt. 37 469Google Scholar
[11] Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar
[12] Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[13] Yan Y, Zhang L, Wang J, Yang J Y, Fazal I M, Ahmed N, Willner A E, Dolinar S J 2012 Opt. Lett. 37 3294Google Scholar
[14] Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A 2014 Opt. Express 22 26117Google Scholar
[15] Brunet C, Ung B, Wang L, Messaddeq Y, LaRochelle S, Rusch L A 2015 Opt. Express 23 10553Google Scholar
[16] Li S, Wang J 2013 IEEE Photon. J. 5 7101007Google Scholar
[17] Li S, Wang J 2014 Sci. Rep. 4 3853
[18] Xia C, Bai N, Ozdur I, Zhou X, Li G 2011 Opt. Express 19 16653Google Scholar
[19] Li S, Wang J 2015 Opt. Express 23 18736Google Scholar
[20] Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L, LaRochelle S 2014 Opt. Express 22 18044Google Scholar
[21] Zhang Z, Gan J, Heng X, Wu Y, Li Q, Qian Q, Chen D, Yang Z 2015 Opt. Express 23 29331Google Scholar
[22] Ferrando A, Silvestre E, Andres P, Miret J J, Andrés M V 2001 Opt. Express 9 687Google Scholar
[23] Yue Y, Zhang L, Yan Y, Ahmed N, Yang J Y, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889Google Scholar
[24] Zhao C, Gan X, Li P, Fang L, Han L, Tu L, Zhao J 2016 J. Lightwave Technol. 34 1206Google Scholar
[25] Zhang H, Zhang W, Xi L, Tang X, Zhang X, Zhang X 2016 IEEE Photon. Technol. Lett. 28 1426Google Scholar
[26] Jin C, Cheng B, Man B, Li Z, Zhang D 2000 Phys. Rev. B 61 10762Google Scholar
[27] Jin C, Meng X, Cheng B, Li Z, Zhang D 2001 Phys. Rev. B 63 195107Google Scholar
-
图 6 (a) HE21模的模场面积; (b) HE21模的非线性系数随波长的变化 (不同中心空气孔半径); (a), (b) 的插图分别为 波段内的模场面积和非线性系数
Figure 6. (a) Effective mode area of HE21, (b) nonlinear coefficient as a function of wavelength for HE21 mode with different r0, the inset shows the (a) effective modes area and (b) nonlinear coefficient between 1500−1600 nm.
-
[1] Ramachandran S, Kristensen P 2013 Nanophotonics 2 455
[2] Curtis J E, Grier D G 2003 Opt. Lett. 28 872Google Scholar
[3] Tabosa J W R, Petrov D V 1999 Phys. Rev. Lett. 83 4967Google Scholar
[4] Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar
[5] Brunet C, Rusch L A 2016 Opt. Fiber Technol. 31 172Google Scholar
[6] Wong K L G G, Xi X, Kang M S, Lee H W, Russell P 2012 Science 337 446Google Scholar
[7] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar
[8] Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar
[9] Allen L, Beijersbergen M W, Spreeuw R, Woerdman J 1992 Phys. Rev. A 45 8185Google Scholar
[10] McGloin D, Simpson N B, Padgett M J 1998 Appl. Opt. 37 469Google Scholar
[11] Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar
[12] Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[13] Yan Y, Zhang L, Wang J, Yang J Y, Fazal I M, Ahmed N, Willner A E, Dolinar S J 2012 Opt. Lett. 37 3294Google Scholar
[14] Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A 2014 Opt. Express 22 26117Google Scholar
[15] Brunet C, Ung B, Wang L, Messaddeq Y, LaRochelle S, Rusch L A 2015 Opt. Express 23 10553Google Scholar
[16] Li S, Wang J 2013 IEEE Photon. J. 5 7101007Google Scholar
[17] Li S, Wang J 2014 Sci. Rep. 4 3853
[18] Xia C, Bai N, Ozdur I, Zhou X, Li G 2011 Opt. Express 19 16653Google Scholar
[19] Li S, Wang J 2015 Opt. Express 23 18736Google Scholar
[20] Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L, LaRochelle S 2014 Opt. Express 22 18044Google Scholar
[21] Zhang Z, Gan J, Heng X, Wu Y, Li Q, Qian Q, Chen D, Yang Z 2015 Opt. Express 23 29331Google Scholar
[22] Ferrando A, Silvestre E, Andres P, Miret J J, Andrés M V 2001 Opt. Express 9 687Google Scholar
[23] Yue Y, Zhang L, Yan Y, Ahmed N, Yang J Y, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889Google Scholar
[24] Zhao C, Gan X, Li P, Fang L, Han L, Tu L, Zhao J 2016 J. Lightwave Technol. 34 1206Google Scholar
[25] Zhang H, Zhang W, Xi L, Tang X, Zhang X, Zhang X 2016 IEEE Photon. Technol. Lett. 28 1426Google Scholar
[26] Jin C, Cheng B, Man B, Li Z, Zhang D 2000 Phys. Rev. B 61 10762Google Scholar
[27] Jin C, Meng X, Cheng B, Li Z, Zhang D 2001 Phys. Rev. B 63 195107Google Scholar
Catalog
Metrics
- Abstract views: 8537
- PDF Downloads: 73
- Cited By: 0