-
Optical vortex beam has wide application prospect in areas such as optical communication, lidar detection and optical trapping. To increase the operating distance, a high-power vortex laser source is necessary in these applications. Control of the spiral chirality of the Laguerre-Gaussian (LG) mode has become a key problem in Q-switched pulsed solid-state vortex lasers. We put forward the injection seeding method to control the spiral chirality of the LG mode in Q-switched laser cavity. The schematic of the method is shown in Fig. (a), a small power continuous wave vortex beam with determined chirality is injected into the laser cavity, with the gain medium pumped by a ring-shaped beam. The optical field has the same spiral chirality with the injected beam will surpass the optical field has the opposite spiral chirality and the chirality purity increases as the injected power increasing. The threshold injected signal-to-noise ratio increases with the angular order of the LG mode, this is due to the decreasing of the overlapping of the standing wave pattern of the opposite chirality beam. The threshold injected signal-to-noise ratio also increases with the pumping power and the reflectivity of the output mirror. The ratio of the pulse energy under injection to the pulse energy under free running decreases with the rising angular order. This ratio increases with the rising pumping power and decreases with the increasing reflectivity of the output mirror. The seeding beam, which is generated by spiral phase modulation on the fundamental mode beam, always has a wide radial spectrum. The radial spectrum of the beam generated by second order spiral phase modulation on the fundamental mode beam is shown in Fig. (b). Under proper ring width of the pumping beam, this radial spectrum can be purified in the Q-switched laser cavity, as is shown in Fig. (c). Therefore, the spiral phase modulated beam can be used as the seeding source to generate high-purity vortex pulse.
-
Keywords:
- solid-state laser /
- vortex beam /
- chirality control /
- injection seeding
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Physical Review A 45 8185
[2] Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Science & Applications 14 4
[3] Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Advanced Photonics 3 034001
[4] Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204 (in Chinese) [王亚东,甘雪涛,俱沛,庞燕,袁林光,赵建林 2015 物理学报 64 034204
[5] Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想,张远颖 2015 物理学报 64 164210]
[6] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Science & Applications 8 90
[7] Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008
[8] Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201 (in Chinese) [赵婷,宫毛毛,张松斌 2024 物理学报 73 244201]
[9] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488
[10] Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002
[11] Wen Y, Pan Z Q 2023 Journal of Lightwave Technology 41 2007
[12] Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040 (in Chinese) [杨苏辉,廖英琦,林学彤,刘欣宇,齐若伊,郝燕 2021 红外与激光工程 50 20211040]
[13] Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203 (in Chinese) [李若楠,薛晶晶,宋丹,李鑫,王丹,杨保东,周海涛 2025 物理学报 74 044203]
[14] Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203 (in Chinese) [刘伟,贾青,郑坚 2024 物理学报 73 055203]
[15] Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006 (in Chinese) [柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006]
[16] Forbes A 2019 Laser Photonics Rev. 13 1900140
[17] Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019
[18] Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704
[19] Kim D J, Kim J W 2017 Optics Communications 383 26
[20] Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449
[21] Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903
[22] Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics Journal 9 1500408
[23] He H S, Chen Z, Li H B, Dong J 2018 Laser Physics 28 055802
[24] Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49
Metrics
- Abstract views: 12
- PDF Downloads: 1
- Cited By: 0