-
Optical vortex beam has wide application prospect in fields such as optical communication, lidar detection and optical trapping. To increase the operating distance, a high-power vortex laser source are required in these applications. Control of the spiral chirality of the Laguerre-Gaussian (LG) mode has become a key problem in Q-switched pulsed solid-state vortex lasers. In this work, we present an injection seeding method to control the spiral chirality of the LG mode in Q-switched laser cavity. The schematic of the method is shown in Fig. (a). A small power continuous wave vortex beam with determined chirality is injected into the laser cavity, with the gain medium pumped by a ring-shaped beam. The light field with the same spiral chirality as the injected beam will exceed the light field with the opposite spiral chirality, and the chirality purity will increase as the injected power increases. The threshold injected signal-to-noise ratio increases with the angular order of the LG mode increasing, this is due to the reduced overlap of the standing wave patterns of the opposite chiral beams. The signal-to-noise ratio of threshold injection also increases as the pumping power and the reflectivity of the output mirror increase. The ratio of the pulse energy under injection to the pulse energy under free running decreases with the angular order rising. This ratio increases with the pumping power rising, and decreases with the reflectivity of the output mirror increasing. The seeding beam generated by spiral phase modulation of the fundamental mode beam always has a wide radial spectrum. The radial spectrum of the beam generated by second order spiral phase modulation of the fundamental mode beam is shown in Fig. (b). Under an appropriate ring width of the pumping beam, this radial spectrum can be purified in the Q-switched laser cavity as shown in Fig. (c). Therefore, the spiral phase modulated beam can be used as a seeding source to generate high-purity vortex pulse.
-
Keywords:
- solid-state laser /
- vortex beam /
- chirality control /
- injection seeding
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[2] Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Sci. Appl. 14 4
Google Scholar
[3] Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Adv. Photonics 3 034001
[4] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204
Google Scholar
Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204
Google Scholar
[5] 陈理想, 张远颖 2015 物理学报 64 164210
Google Scholar
Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210
Google Scholar
[6] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90
Google Scholar
[7] Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008
[8] 赵婷, 宫毛毛, 张松斌 2024 物理学报 73 244201
Google Scholar
Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201
Google Scholar
[9] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488
Google Scholar
[10] Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002
Google Scholar
[11] Wen Y, Pan Z Q 2023 J. Lightwave Technol. 41 2007
Google Scholar
[12] 杨苏辉, 廖英琦, 林学彤, 刘欣宇, 齐若伊, 郝燕 2021 红外与激光工程 50 20211040
Google Scholar
Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040
Google Scholar
[13] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 物理学报 74 044203
Google Scholar
Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203
Google Scholar
[14] 刘伟, 贾青, 郑坚 2024 物理学报 73 055203
Google Scholar
Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203
Google Scholar
[15] 柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006
Google Scholar
Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006
Google Scholar
[16] Forbes A 2019 Laser Photonics Rev. 13 1900140
Google Scholar
[17] Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019
[18] Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704
Google Scholar
[19] Kim D J, Kim J W 2017 Opt. Commun. 383 26
Google Scholar
[20] Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449
Google Scholar
[21] Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903
Google Scholar
[22] Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics J. 9 1500408
[23] He H S, Chen Z, Li H B, Dong J 2018 Laser Phys. 28 055802
Google Scholar
[24] Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49
-
图 5 两相反手性驻波场的空间交叠 (a) $ {\text{L}}{{\text{G}}_{{\text{0,1}}}} $模式两手性驻波场的空间分布, 第一行为左手性驻波场, 第二行为右手性驻波场; (b) 空间交叠积分随角向阶次的变化
Figure 5. Overlapping of the standing wave with opposite chirality: (a) Spatial profile of the standing wave with opposite chirality of the mode $ {\text{L}}{{\text{G}}_{{\text{0,1}}}} $, the first row shows the patterns with left chirality and the second row shows the patters with right chirality; (b) dependence of the overlapping integral on the mode angular order.
图 7 单脉冲能量特性 (a) 单脉冲能量随注入信噪比的变化; (b) 注入状态下的单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $与角向阶次的关系
Figure 7. Characteristics of the pulse energy (a) Dependence of the pulse energy on the injected signal-to-noise ratio; (b) dependence of the pulse energy ratio under injection to that under free running on the angular order.
图 8 抽运功率对阈值注入信噪比和单脉冲能量的影响(a), (c)分别为不同抽运功率下手性纯净度和单脉冲能量随注入信噪比的变化; (b) 阈值注入信噪比随抽运功率的变化; (d) 注入状态下的单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $随抽运功率的变化
Figure 8. The effect of the pumping power on the threshold injected signal-to-noise ratio and pulse energy: (a), (c) The chirality purity and the pulse energy under different injected signal-to -noise ratio; (b) dependence of the threshold injected signal-to-noise ratio on pump power; (d) dependence of the pulse energy ratio under injection to that under free running on the pump power.
图 9 阈值注入信噪比(a), 相反手性驻波场的交叠积分(b), 注入状态下单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $(c)随输出镜反射率的变化
Figure 9. Dependence of the injected signal-to-noise ratio (a), overlapping integral of the standing wave pattern with opposite chirality (b), the pulse energy ratio under injection to that under free running (c) on the reflectivity of the output mirror.
图 12 不同的环形抽运光环带宽度下脉冲的径向模谱 (a) $ {\omega _{{\text{pump}}}} = 0.8 $mm; (b) $ {\omega _{{\text{pump}}}} = 0.6 $mm; (c) $ {\omega _{{\text{pump}}}} = 0.4 $mm; (d) $ {\omega _{{\text{pump}}}} = $$ 0.2 $mm
Figure 12. The radial spectrum of the pulse with different pump ring width: (a) $ {\omega _{{\text{pump}}}} = 0.8 $mm; (b) $ {\omega _{{\text{pump}}}} = 0.6 $mm; (c) $ {\omega _{{\text{pump}}}} = $$ 0.4 $mm; (d) $ {\omega _{{\text{pump}}}} = 0.2 $mm.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[2] Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Sci. Appl. 14 4
Google Scholar
[3] Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Adv. Photonics 3 034001
[4] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204
Google Scholar
Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204
Google Scholar
[5] 陈理想, 张远颖 2015 物理学报 64 164210
Google Scholar
Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210
Google Scholar
[6] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90
Google Scholar
[7] Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008
[8] 赵婷, 宫毛毛, 张松斌 2024 物理学报 73 244201
Google Scholar
Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201
Google Scholar
[9] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488
Google Scholar
[10] Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002
Google Scholar
[11] Wen Y, Pan Z Q 2023 J. Lightwave Technol. 41 2007
Google Scholar
[12] 杨苏辉, 廖英琦, 林学彤, 刘欣宇, 齐若伊, 郝燕 2021 红外与激光工程 50 20211040
Google Scholar
Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040
Google Scholar
[13] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 物理学报 74 044203
Google Scholar
Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203
Google Scholar
[14] 刘伟, 贾青, 郑坚 2024 物理学报 73 055203
Google Scholar
Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203
Google Scholar
[15] 柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006
Google Scholar
Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006
Google Scholar
[16] Forbes A 2019 Laser Photonics Rev. 13 1900140
Google Scholar
[17] Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019
[18] Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704
Google Scholar
[19] Kim D J, Kim J W 2017 Opt. Commun. 383 26
Google Scholar
[20] Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449
Google Scholar
[21] Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903
Google Scholar
[22] Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics J. 9 1500408
[23] He H S, Chen Z, Li H B, Dong J 2018 Laser Phys. 28 055802
Google Scholar
[24] Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49
Catalog
Metrics
- Abstract views: 377
- PDF Downloads: 5
- Cited By: 0