Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of Q-switched vortex solid-state laser with spiral chirality controlled by injection seeding

LIAN Tianhong JI Xinya XING Junhong LIU Yun JIAO Mingxing

Citation:

Characteristics of Q-switched vortex solid-state laser with spiral chirality controlled by injection seeding

LIAN Tianhong, JI Xinya, XING Junhong, LIU Yun, JIAO Mingxing
cstr: 32037.14.aps.74.20250667
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Optical vortex beam has wide application prospect in fields such as optical communication, lidar detection and optical trapping. To increase the operating distance, a high-power vortex laser source are required in these applications. Control of the spiral chirality of the Laguerre-Gaussian (LG) mode has become a key problem in Q-switched pulsed solid-state vortex lasers. In this work, we present an injection seeding method to control the spiral chirality of the LG mode in Q-switched laser cavity. The schematic of the method is shown in Fig. (a). A small power continuous wave vortex beam with determined chirality is injected into the laser cavity, with the gain medium pumped by a ring-shaped beam. The light field with the same spiral chirality as the injected beam will exceed the light field with the opposite spiral chirality, and the chirality purity will increase as the injected power increases. The threshold injected signal-to-noise ratio increases with the angular order of the LG mode increasing, this is due to the reduced overlap of the standing wave patterns of the opposite chiral beams. The signal-to-noise ratio of threshold injection also increases as the pumping power and the reflectivity of the output mirror increase. The ratio of the pulse energy under injection to the pulse energy under free running decreases with the angular order rising. This ratio increases with the pumping power rising, and decreases with the reflectivity of the output mirror increasing. The seeding beam generated by spiral phase modulation of the fundamental mode beam always has a wide radial spectrum. The radial spectrum of the beam generated by second order spiral phase modulation of the fundamental mode beam is shown in Fig. (b). Under an appropriate ring width of the pumping beam, this radial spectrum can be purified in the Q-switched laser cavity as shown in Fig. (c). Therefore, the spiral phase modulated beam can be used as a seeding source to generate high-purity vortex pulse.
      Corresponding author: LIAN Tianhong, tianhongl@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805196, 51875455).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Sci. Appl. 14 4Google Scholar

    [3]

    Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Adv. Photonics 3 034001

    [4]

    王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204Google Scholar

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204Google Scholar

    [5]

    陈理想, 张远颖 2015 物理学报 64 164210Google Scholar

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210Google Scholar

    [6]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90Google Scholar

    [7]

    Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008

    [8]

    赵婷, 宫毛毛, 张松斌 2024 物理学报 73 244201Google Scholar

    Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201Google Scholar

    [9]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [10]

    Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002Google Scholar

    [11]

    Wen Y, Pan Z Q 2023 J. Lightwave Technol. 41 2007Google Scholar

    [12]

    杨苏辉, 廖英琦, 林学彤, 刘欣宇, 齐若伊, 郝燕 2021 红外与激光工程 50 20211040Google Scholar

    Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040Google Scholar

    [13]

    李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 物理学报 74 044203Google Scholar

    Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203Google Scholar

    [14]

    刘伟, 贾青, 郑坚 2024 物理学报 73 055203Google Scholar

    Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203Google Scholar

    [15]

    柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006Google Scholar

    Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006Google Scholar

    [16]

    Forbes A 2019 Laser Photonics Rev. 13 1900140Google Scholar

    [17]

    Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019

    [18]

    Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704Google Scholar

    [19]

    Kim D J, Kim J W 2017 Opt. Commun. 383 26Google Scholar

    [20]

    Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449Google Scholar

    [21]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903Google Scholar

    [22]

    Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics J. 9 1500408

    [23]

    He H S, Chen Z, Li H B, Dong J 2018 Laser Phys. 28 055802Google Scholar

    [24]

    Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49

  • 图 1  种子注入螺旋手性控制调Q固体激光器原理性方案

    Figure 1.  Schematic of the chirality control by injection seeding in the Q-switched vortex laser.

    图 2  种子注入下$ {\text{L}}{{\text{G}}_{0, 2}} $模两个相反手性光场的脉冲过程 (a) 种子功率 1 nW; (b) 种子功率10 nW; (c) 种子功率100 nW; (d) 种子功率1 μW

    Figure 2.  Pulse processes of the photons with opposite chirality under injection seeding: (a) Seed power 1 nW; (b) seed power 10 nW; (c) seed power 100 nW; (d) seed power 1 μW.

    图 3  脉冲建立时间随注入信噪比的变化

    Figure 3.  Dependence of the pulse build-up time on the injected signal-to-noise ratio.

    图 4  手性纯净度随注入信噪比的变化

    Figure 4.  Dependence of the chirality purity on the injected signal-to-noise ratio.

    图 5  两相反手性驻波场的空间交叠 (a) $ {\text{L}}{{\text{G}}_{{\text{0,1}}}} $模式两手性驻波场的空间分布, 第一行为左手性驻波场, 第二行为右手性驻波场; (b) 空间交叠积分随角向阶次的变化

    Figure 5.  Overlapping of the standing wave with opposite chirality: (a) Spatial profile of the standing wave with opposite chirality of the mode $ {\text{L}}{{\text{G}}_{{\text{0,1}}}} $, the first row shows the patterns with left chirality and the second row shows the patters with right chirality; (b) dependence of the overlapping integral on the mode angular order.

    图 6  阈值注入信噪比随角向阶次的变化

    Figure 6.  Dependence of the threshold injected signal-to-noise ratio on the angular order.

    图 7  单脉冲能量特性 (a) 单脉冲能量随注入信噪比的变化; (b) 注入状态下的单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $与角向阶次的关系

    Figure 7.  Characteristics of the pulse energy (a) Dependence of the pulse energy on the injected signal-to-noise ratio; (b) dependence of the pulse energy ratio under injection to that under free running on the angular order.

    图 8  抽运功率对阈值注入信噪比和单脉冲能量的影响(a), (c)分别为不同抽运功率下手性纯净度和单脉冲能量随注入信噪比的变化; (b) 阈值注入信噪比随抽运功率的变化; (d) 注入状态下的单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $随抽运功率的变化

    Figure 8.  The effect of the pumping power on the threshold injected signal-to-noise ratio and pulse energy: (a), (c) The chirality purity and the pulse energy under different injected signal-to -noise ratio; (b) dependence of the threshold injected signal-to-noise ratio on pump power; (d) dependence of the pulse energy ratio under injection to that under free running on the pump power.

    图 9  阈值注入信噪比(a), 相反手性驻波场的交叠积分(b), 注入状态下单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $(c)随输出镜反射率的变化

    Figure 9.  Dependence of the injected signal-to-noise ratio (a), overlapping integral of the standing wave pattern with opposite chirality (b), the pulse energy ratio under injection to that under free running (c) on the reflectivity of the output mirror.

    图 10  阈值注入信噪比(a), 注入状态下单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $(b)随谐振腔长度的变化

    Figure 10.  Dependence of the injected signal-to-noise ratio (a), the pulse energy ratio under injection to that under free running (b) on cavity length.

    图 11  基模光束经2阶角向相位调制后的光斑(a)和径向模谱(b)

    Figure 11.  The intensity profile the fundamental mode beam with second order angular phase modulation (a) and its radial spectrum (b)

    图 12  不同的环形抽运光环带宽度下脉冲的径向模谱 (a) $ {\omega _{{\text{pump}}}} = 0.8 $mm; (b) $ {\omega _{{\text{pump}}}} = 0.6 $mm; (c) $ {\omega _{{\text{pump}}}} = 0.4 $mm; (d) $ {\omega _{{\text{pump}}}} = $$ 0.2 $mm

    Figure 12.  The radial spectrum of the pulse with different pump ring width: (a) $ {\omega _{{\text{pump}}}} = 0.8 $mm; (b) $ {\omega _{{\text{pump}}}} = 0.6 $mm; (c) $ {\omega _{{\text{pump}}}} = $$ 0.4 $mm; (d) $ {\omega _{{\text{pump}}}} = 0.2 $mm.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Sci. Appl. 14 4Google Scholar

    [3]

    Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Adv. Photonics 3 034001

    [4]

    王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204Google Scholar

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204Google Scholar

    [5]

    陈理想, 张远颖 2015 物理学报 64 164210Google Scholar

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210Google Scholar

    [6]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90Google Scholar

    [7]

    Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008

    [8]

    赵婷, 宫毛毛, 张松斌 2024 物理学报 73 244201Google Scholar

    Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201Google Scholar

    [9]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [10]

    Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002Google Scholar

    [11]

    Wen Y, Pan Z Q 2023 J. Lightwave Technol. 41 2007Google Scholar

    [12]

    杨苏辉, 廖英琦, 林学彤, 刘欣宇, 齐若伊, 郝燕 2021 红外与激光工程 50 20211040Google Scholar

    Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040Google Scholar

    [13]

    李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 物理学报 74 044203Google Scholar

    Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203Google Scholar

    [14]

    刘伟, 贾青, 郑坚 2024 物理学报 73 055203Google Scholar

    Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203Google Scholar

    [15]

    柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006Google Scholar

    Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006Google Scholar

    [16]

    Forbes A 2019 Laser Photonics Rev. 13 1900140Google Scholar

    [17]

    Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019

    [18]

    Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704Google Scholar

    [19]

    Kim D J, Kim J W 2017 Opt. Commun. 383 26Google Scholar

    [20]

    Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449Google Scholar

    [21]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903Google Scholar

    [22]

    Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics J. 9 1500408

    [23]

    He H S, Chen Z, Li H B, Dong J 2018 Laser Phys. 28 055802Google Scholar

    [24]

    Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49

  • [1] QIN Xueyun, WU Yue, ZHU Rongqi, ZHU Zhuqing. Experimental study on vortex beam generation based on micron-scale all-optical magnetic holographic structures. Acta Physica Sinica, 2025, 74(17): 174202. doi: 10.7498/aps.74.20250649
    [2] Zhao Ting, Gong Mao-Mao, Zhang Song-Bin. Theoretical study on photo-ionization of helium atoms by Bessel vortex light. Acta Physica Sinica, 2024, 73(24): 244201. doi: 10.7498/aps.73.20241378
    [3] Wang Tao-Ning, Jiang Ling-Ling, Cheng Ting-Qing, Wang Li, Jiang Hai-He. LiNbO3 acousto-optically Q-switched pulse characteristics of Er:YAG laser at 2.94 μm. Acta Physica Sinica, 2024, 73(4): 044205. doi: 10.7498/aps.73.20231616
    [4] Lian Tian-Hong, Dou Yi-Qun, Zhou Lei, Liu Yun, Kou Ke, Jiao Ming-Xing. Modal structure of high power thin-disk vortex laser under thermal effect. Acta Physica Sinica, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [5] Yang Xin-Yu, Ye Hua-Peng, Li Pei-Yun, Liao He-Lin, Yuan Dong, Zhou Guo-Fu. Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications. Acta Physica Sinica, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [6] Chen Tian-Yu, Wang Chang-Shun, Pan Yu-Jia, Sun Li-Li. Recording optical vortices in azo polymer films by applying holographic method. Acta Physica Sinica, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [7] Lian Tian-Hong, Wang Shi-Yu, Kou Ke, Liu Yun. Off-axis pumped Hermite-Gaussian mode solid-state laser. Acta Physica Sinica, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [8] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [9] Wei Wei, Zhang Zhi-Ming, Tang Li-Qin, Ding Lei, Fan Wan-De, Li Yi-Gang. Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber. Acta Physica Sinica, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [10] Dai Shu-Tao, Jiang Tao, Wu Li-Xia, Wu Hong-Chun, Lin Wen-Xiong. Single-axial-mode Nd:YAG laser with precisely controllable laser pulse output time. Acta Physica Sinica, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [11] Yang Wen-Hai, Diao Wen-Ting, Cai Chun-Xiao, Song Xue-Rui, Feng Fu-Pan, Zheng Yao-Hui, Duan Chong-Di. Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source. Acta Physica Sinica, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [12] Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [13] Zhao Ying-Chun, Zhang Xiu-Ying, Yuan Cao-Jin, Nie Shou-Ping, Zhu Zhu-Qing, Wang Lin, Li Yang, Gong Li-Ping, Feng Shao-Tong. Dark-field digital holographic microscopy by using vortex beam illumination. Acta Physica Sinica, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [14] He Guang-Yuan, Guo Jing, Jiao Zhong-Xing, Wang Biao. Control of the thermal lensing effect in solid-state laser. Acta Physica Sinica, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [15] Li Lei, Zhao Chang-Ming, Zhang Peng, Yang Su-Hui. The study on diode-pumped two-frequency solid-state laser with tunable frequency difference. Acta Physica Sinica, 2007, 56(5): 2663-2669. doi: 10.7498/aps.56.2663
    [16] Zhang Qiu-Lin, Su Hong-Xin, Sun Jiang, Guo Qing-Lin, Fu Guang-Sheng. Stability of LD pumped passively Q-switched solid-state lasers. Acta Physica Sinica, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [17] Guan Jun, Li Jin-Ping, Cheng Guang-Hua, Chen Guo-Fu, Hou Xun. Experimental study on thermal lensing of end-pumped solid-state lasers. Acta Physica Sinica, 2004, 53(6): 1804-1809. doi: 10.7498/aps.53.1804
    [18] Wang Shi-Yu, Guo Zhen, Fu Jun-Mei, Cai De-Fang, Wen Jian-Guo, Xue Hai-Zhong, Tang Ying-De. Heat-induced undulation in the distribution of diode-pumped solid-state laser. Acta Physica Sinica, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [19] Shang Lian-Ju. Cavity mode matching analyses of end-pumped solid-state lasers. Acta Physica Sinica, 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [20] Zhang Hai-Chao, Song Feng, Meng Fan-Zhen, Ding Xin, Zhang Guang-Yin, Shang Mei-Ru. . Acta Physica Sinica, 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
Metrics
  • Abstract views:  377
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  22 May 2025
  • Accepted Date:  24 June 2025
  • Available Online:  17 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回