Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on vortex beam generation based on micron-scale all-optical magnetic holographic structures

QIN Xueyun WU Yue ZHU Rongqi ZHU Zhuqing

Citation:

Experimental study on vortex beam generation based on micron-scale all-optical magnetic holographic structures

QIN Xueyun, WU Yue, ZHU Rongqi, ZHU Zhuqing
cstr: 32037.14.aps.74.20250649
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, vortex beams carrying orbital angular momentum (OAM) have been widely applied to optical communications, optical manipulation, and precision measurement. However, traditional generation methods such as spiral phase plates, spatial light modulators, and metasurfaces, encounter several challenges, including structural rigidity, limited dynamic tunability, and inadequate integration capabilities. These limitations hinder the realization of reconfigurable and programmable vortex beam generation systems. In order to solve these problems, a novel vortex beam generation method based on all-optical magnetic holography is presented in this paper. In this technique, a single-pulse femtosecond laser is used in a dotted writing mode to engrave a pre-designed fork-shaped grating hologram onto the surface of a micron-scale magnetic material, GdFeCo. Under subsequent illumination with a plane wave, the vortex beam is reconstructed via the magneto-optical Faraday diffraction effect. Experimental results show that one-dimensional fork-shaped gratings can flexibly generate vortex beams with different topological charges (l = ±2, ±5, ±8), where the beam radius increases with the augment of topological charges. Furthermore, a two-dimensional fork-shaped grating, formed by superimposing horizontal and vertical one-dimensional gratings, can produce 3 × 3 vortex beam arrays with various topological charge distributions, enabling the spatial modulation of OAM. This method offers advantages such as reusability, long-term stability, and a compact structure, thus providing a programmable and reconfigurable platform for generating micro-structured vortex beams. Unlike traditional static optical elements, this approach enables dynamic, high-resolution, and easy-to-integrate solutions, and shows great application potential in OAM-based multi-channel optical communication, multi-particle manipulation, and parallel laser processing.
      Corresponding author: ZHU Zhuqing, zhuqingzhu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174196) and the State Key Laboratory of Optical Technology for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No. SKLAO2022001A17).
    [1]

    Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645Google Scholar

    [2]

    Yan W X, Chen Z Z, Long X, Gao Y, Yuan Z, Ren Z C, Wang X L, Ding J P, Wang H T 2024 Adv. Photonics 6 036002

    [3]

    Shi Z J, Wan Z S, Zhan Z Y, Liu K Y, Liu Q, Fu X 2023 Nat. Commun. 14 1869Google Scholar

    [4]

    Zhu L H, Zhang X H, Rui G H, He J, Gu B, Zhan Q W 2023 Nanophotonics 12 4351Google Scholar

    [5]

    Zhu L H, Tai Y P, Li H H, Hu H J, Li X Z, Cai Y J, Shen Y J 2023 Photonics Res. 11 1524Google Scholar

    [6]

    Peng L, Yao J, Bai Y H, Sun Y F, Zeng J C, Ren Y X, Xie J X, Hu Z Y, Zhang Q, Yang Y J 2024 ACS Photonics 11 1213Google Scholar

    [7]

    Gao W Y, Zhou Y, Li X, Zhang Y A, Zhang Q, Li M M, Yu X H, Yan S H, Xu X H, Yao B L 2024 Photonics Res. 12 2881Google Scholar

    [8]

    Fang L, Padgett M J, Wang J 2017 Laser Photonics Rev. 11 1700183Google Scholar

    [9]

    Zhu L H, Tang M M, Li H H, Tai Y P, Li X Z 2021 Nanophotonics 10 2487Google Scholar

    [10]

    Qin X Y, Zhang H, Tang M M, Zhou Y J, Tai Y P, Li X Z 2024 Opt. Lett. 49 2213Google Scholar

    [11]

    Wang J, Li K, Quan Z Q 2024 Photonics Insights 3 R05Google Scholar

    [12]

    张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙 2025 物理学报 74 064201Google Scholar

    Zhang S L, Tian X M, Xu J W, Xu Y N, Li L, Liu J L 2025 Acta Phys. Sin. 74 064201Google Scholar

    [13]

    Liu M Z, Lin P C, Huo P C, Qi H C, Jin R C, Zhang H, Ren Y Z, Song M W, Lu Y Q, Xu T 2025 Nat. Commu. 16 3994Google Scholar

    [14]

    Zhou S Y, Li L, Gao L L, Zhou Z Y, Yang J Y, Zhang S R, Wang T L, Gao C Q, Fu S Y 2025 Light Sci. Appl. 14 167Google Scholar

    [15]

    Rottmayer R E, Batra S, Buechel D, Challener W A, Hohlfeld J, Kubota Y, Li L, Lu B, Mihalcea C, Mountfield K, Pelhos K, Peng C, Rausch T, Seigler M A, Weller D, Yang X M 2006 IEEE Trans. Magn. 42 2417Google Scholar

    [16]

    Challener W A, Peng C B, Itagi A V, Karns D, Peng W, Peng Y G, Yang X M, Zhu X B, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A, Gage E C 2009 Nat. Photonics 3 220Google Scholar

    [17]

    Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205Google Scholar

    [18]

    Makowski M, Kolodziejczyk M, Bomba J, Frej A, Sypek M, Bolek J, Starobrat J, Tsukamoto A, Davies C S, Kirilyuk A, Stupakiewicz A 2022 J. Magn. Magn. Mater. 548 168989Google Scholar

    [19]

    Makowski M, Bomba J, Frej A, Kolodziejczyk M, Sypek M, Shimobaba T, Ito T, Kirilyuk A, Stupakiewicz A 2022 Nat. Commun. 13 7286Google Scholar

    [20]

    Mezrich R 1970 IEEE Trans. Magn. 6 537Google Scholar

    [21]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [22]

    Qin X Y, Zhu L H, Hu H J, Tai Y P, Li X Z 2023 J. Appl. Phys. 133 013101Google Scholar

    [23]

    Tai Y P, Fan H H, Ma X, Wei W J, Zhang H, Tang M M, Li X Z 2024 Opt. Express 32 10577Google Scholar

    [24]

    朱凌峰, 王静, 郭苗军, 李晋红 2023 激光杂志 44 150

    Zhu L F, Wang J, Guo M J, Li J H 2023 Laser J. 44 150

  • 图 1  全光磁全息生成涡旋光的原理图 (a1) 偏光显微镜下的全息图; (a2) Gd27Fe63.87Co9.13材料的多层膜结构; (b1) 涡旋光实验光强图

    Figure 1.  Principle of vortex beam generation based on all-optical magnetic holography: (a1) Hologram observed under a polarizing optical microscope; (a2) multilayer film structure of the Gd27Fe63.87Co9.13 material; (b1) experimental intensity distribution of the reconstructed vortex beam.

    图 2  二元磁光栅的法拉第效应 (a) 磁性材料不同位置的磁化方向; (b) 入射光经过磁性材料后的电场分布

    Figure 2.  The Faraday effect of binary magnetic gratings: (a) The magnetization directions of magnetic materials at different positions; (b) the electric field distribution of incident light after passing through magnetic materials.

    图 3  实验装置示意图, H1—H2为半波片; P1—P4为偏振片; SH为光开关; A为光阑; M1—M2为反射镜; Q为1/4波片; D为二向色镜; L为透镜; O为显微物镜; CCD为工业相机

    Figure 3.  Schematic of experimental setup, H1–H2 represent half-wave plates; P1–P4 represent polarizers; SH represents optical shutter; A represents aperture; M1–M2 represents mirrors; Q represents quarter-wave plate; D represents dichroic mirror; L represents lens; O represents objective lens; CCD represents industrial camera.

    图 4  反转尺寸、反转概率与激光能量密度之间的关系 (a) 不同激光能量密度下的反转尺寸; (b) 反转概率与激光能量密度之间的拟合曲线

    Figure 4.  Relationship between reversal size, reversal probability, and laser energy density: (a) Reversal sizes under different laser energy densities; (b) fitted curve of reversal probability versus laser energy density.

    图 5  涡旋光的生成 (a1)—(a3) 一维叉形光栅模拟图; (b1)—(b3) 涡旋光模拟光强图; (c1)—(c3) 偏光显微镜下的一维叉形光栅实验图; (d1)—(d3) 涡旋光实验光强图

    Figure 5.  Generation of vortex beams: (a1)–(a3) Simulated binary fork grating patterns; (b1)–(b3) simulated intensity distributions of vortex beams; (c1)–(c3) experimental images of one-dimensional fork gratings observed under a polarizing microscope; (d1)–(d3) experimental intensity distributions of the reconstructed vortex beams.

    图 6  涡旋光阵列的生成 (a1), (a2) 二维叉形光栅模拟图; (b1), (b2) 涡旋光阵列模拟光强图; (c1), (c2) 偏光显微镜下的二维叉形光栅实验图; (d1), (d2) 涡旋光阵列实验光强图

    Figure 6.  Generation of vortex beam arrays: (a1), (a2) Simulated two-dimensional fork grating patterns; (b1), (b2) simulated intensity distributions of vortex beam arrays; (c1), (c2) experimental images of two-dimensional fork gratings observed under a polarizing microscope; (d1), (d2) experimental intensity distributions of the reconstructed vortex beam arrays.

  • [1]

    Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645Google Scholar

    [2]

    Yan W X, Chen Z Z, Long X, Gao Y, Yuan Z, Ren Z C, Wang X L, Ding J P, Wang H T 2024 Adv. Photonics 6 036002

    [3]

    Shi Z J, Wan Z S, Zhan Z Y, Liu K Y, Liu Q, Fu X 2023 Nat. Commun. 14 1869Google Scholar

    [4]

    Zhu L H, Zhang X H, Rui G H, He J, Gu B, Zhan Q W 2023 Nanophotonics 12 4351Google Scholar

    [5]

    Zhu L H, Tai Y P, Li H H, Hu H J, Li X Z, Cai Y J, Shen Y J 2023 Photonics Res. 11 1524Google Scholar

    [6]

    Peng L, Yao J, Bai Y H, Sun Y F, Zeng J C, Ren Y X, Xie J X, Hu Z Y, Zhang Q, Yang Y J 2024 ACS Photonics 11 1213Google Scholar

    [7]

    Gao W Y, Zhou Y, Li X, Zhang Y A, Zhang Q, Li M M, Yu X H, Yan S H, Xu X H, Yao B L 2024 Photonics Res. 12 2881Google Scholar

    [8]

    Fang L, Padgett M J, Wang J 2017 Laser Photonics Rev. 11 1700183Google Scholar

    [9]

    Zhu L H, Tang M M, Li H H, Tai Y P, Li X Z 2021 Nanophotonics 10 2487Google Scholar

    [10]

    Qin X Y, Zhang H, Tang M M, Zhou Y J, Tai Y P, Li X Z 2024 Opt. Lett. 49 2213Google Scholar

    [11]

    Wang J, Li K, Quan Z Q 2024 Photonics Insights 3 R05Google Scholar

    [12]

    张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙 2025 物理学报 74 064201Google Scholar

    Zhang S L, Tian X M, Xu J W, Xu Y N, Li L, Liu J L 2025 Acta Phys. Sin. 74 064201Google Scholar

    [13]

    Liu M Z, Lin P C, Huo P C, Qi H C, Jin R C, Zhang H, Ren Y Z, Song M W, Lu Y Q, Xu T 2025 Nat. Commu. 16 3994Google Scholar

    [14]

    Zhou S Y, Li L, Gao L L, Zhou Z Y, Yang J Y, Zhang S R, Wang T L, Gao C Q, Fu S Y 2025 Light Sci. Appl. 14 167Google Scholar

    [15]

    Rottmayer R E, Batra S, Buechel D, Challener W A, Hohlfeld J, Kubota Y, Li L, Lu B, Mihalcea C, Mountfield K, Pelhos K, Peng C, Rausch T, Seigler M A, Weller D, Yang X M 2006 IEEE Trans. Magn. 42 2417Google Scholar

    [16]

    Challener W A, Peng C B, Itagi A V, Karns D, Peng W, Peng Y G, Yang X M, Zhu X B, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A, Gage E C 2009 Nat. Photonics 3 220Google Scholar

    [17]

    Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205Google Scholar

    [18]

    Makowski M, Kolodziejczyk M, Bomba J, Frej A, Sypek M, Bolek J, Starobrat J, Tsukamoto A, Davies C S, Kirilyuk A, Stupakiewicz A 2022 J. Magn. Magn. Mater. 548 168989Google Scholar

    [19]

    Makowski M, Bomba J, Frej A, Kolodziejczyk M, Sypek M, Shimobaba T, Ito T, Kirilyuk A, Stupakiewicz A 2022 Nat. Commun. 13 7286Google Scholar

    [20]

    Mezrich R 1970 IEEE Trans. Magn. 6 537Google Scholar

    [21]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [22]

    Qin X Y, Zhu L H, Hu H J, Tai Y P, Li X Z 2023 J. Appl. Phys. 133 013101Google Scholar

    [23]

    Tai Y P, Fan H H, Ma X, Wei W J, Zhang H, Tang M M, Li X Z 2024 Opt. Express 32 10577Google Scholar

    [24]

    朱凌峰, 王静, 郭苗军, 李晋红 2023 激光杂志 44 150

    Zhu L F, Wang J, Guo M J, Li J H 2023 Laser J. 44 150

  • [1] LI Ruonan, XUE Jingjing, SONG Dan, LI Xin, WANG Dan, YANG Baodong, ZHOU Haitao. Transfer of optical orbital angular momentum under nonreciprocity-reciprocity amplification conversion. Acta Physica Sinica, 2025, 74(4): 044203. doi: 10.7498/aps.74.20241565
    [2] FANG Guoquan, LIN Han, WANG Siyue, PENG Pu, FANG Zheyu. Orbital angular momentum multiplexing three-dimensional encrypted hologram. Acta Physica Sinica, 2025, 74(6): 064205. doi: 10.7498/aps.74.20241444
    [3] GAO Yujie, LI Jinhong, WANG Jing, LIU Jinhong, YIN Xiaojin. Full vector properties of angular momentum of cylindrical vector vortex beam propagating in free space. Acta Physica Sinica, 2025, 74(5): 059202. doi: 10.7498/aps.74.20241344
    [4] Jia Yi-Cheng, Zhang Fu-Rong, Zhang Jing-Feng, Kong Ling-Jun, Zhang Xiang-Dong. Three-dimensional spatial orbital angular momentum holography. Acta Physica Sinica, 2024, 73(9): 094202. doi: 10.7498/aps.73.20231822
    [5] Zhang Zhuo, Zhang Jing-Feng, Kong Ling-Jun. Orbital angular momentum splitter of light based on beam displacer. Acta Physica Sinica, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [6] Xu Meng-Min, Li Xiao-Qing, Tang Rong, Ji Xiao-Ling. Influence of wind-dominated thermal blooming on orbital angular momentum and phase singularity of dual-mode vortex beams. Acta Physica Sinica, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [7] Wu Hang, Chen Liao, Shu Xue-Wen, Zhang Xin-Liang. Generation of all-fiber third-order orbital angular momentum modes based on femtosecond laser processing of long-period grating. Acta Physica Sinica, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [8] Yang Xin-Yu, Ye Hua-Peng, Li Pei-Yun, Liao He-Lin, Yuan Dong, Zhou Guo-Fu. Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications. Acta Physica Sinica, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [9] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [10] Chen Tian-Yu, Wang Chang-Shun, Pan Yu-Jia, Sun Li-Li. Recording optical vortices in azo polymer films by applying holographic method. Acta Physica Sinica, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [11] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [12] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [13] Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [14] Zhao Ying-Chun, Zhang Xiu-Ying, Yuan Cao-Jin, Nie Shou-Ping, Zhu Zhu-Qing, Wang Lin, Li Yang, Gong Li-Ping, Feng Shao-Tong. Dark-field digital holographic microscopy by using vortex beam illumination. Acta Physica Sinica, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [15] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] Chen Xiao-Yi, Li Hai-Xia, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu, Liu Man. Measurement of orbital angular momentum of Laguerre-Gaussian beam by using phase vortices of interference fields. Acta Physica Sinica, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] Lü Hong, Ke Xi-Zheng. Scattering of a beam with orbital angular momentum by a single sphere. Acta Physica Sinica, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] Su Zhi-Kun, Wang Fa-Qiang, Lu Yi-Qun, Jin Rui-Bo, Liang Rui-Sheng, Liu Song-Hao. Study on quantum cryptography using orbital angular momentum states of photons. Acta Physica Sinica, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] Gao Ming-Wei, Gao Chun-Qing, Lin Zhi-Feng. Generation of twisted stigmatic beam and transfer of orbital angular momentum during the beam transformation. Acta Physica Sinica, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] Ye Fang-Wei, Li Yong-Ping. Measurement of superposition of orbit angular momentum states of photons by fork-like grating. Acta Physica Sinica, 2003, 52(2): 328-331. doi: 10.7498/aps.52.328
Metrics
  • Abstract views:  386
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2025
  • Accepted Date:  21 June 2025
  • Available Online:  17 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回