Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of all-fiber third-order orbital angular momentum modes based on femtosecond laser processing of long-period grating

Wu Hang Chen Liao Shu Xue-Wen Zhang Xin-Liang

Citation:

Generation of all-fiber third-order orbital angular momentum modes based on femtosecond laser processing of long-period grating

Wu Hang, Chen Liao, Shu Xue-Wen, Zhang Xin-Liang
PDF
HTML
Get Citation
  • The generation of orbital angular momentum (OAM) modes is very important, for they have a variety of applications such as in optical tweezers, quantum optics, and optical communication systems. Particularly, how can high-order OAM modes be generated efficiently in fibers with the advantage of low cost and compatible with fiber system? The Traditional method for first order to third order OAM is based on long period fiber grating (LPFG) fabricated by carbon dioxide laser. However, high power and large focused spot of carbon dioxide laser are unfavorable for stable and repeatable generation of higher-order OAM, which needs the LPFG with small grating pitch. In order to solve this problem, a third-order OAM mode converter based on femtosecond microfabrication is proposed and fabricated for the first time. With the advantage of 4.4 μm focused spot size near the core, lower power and lower heat absorption efficiency, this method can be more stable and promising. Therefore, we first carry out the mode filed analysis and simulate the intensity and phase profiles of the superposed mode field in LP odd-even mode on different scales and phases patterns to obtain OAM mode. Second, we use the coupled-mode theory to analyze and simulate the transmission spectrum of LPFG, which guides the setting of the grating parameters such as the grating pitch, the depth of modulation and the length of the grating. By experimental verification, an asymmetric modulated long-period fiber grating with a pitch setting to 194 μm is fabricated on a six-mode fiber. The fundamental mode can be converted into the third-order angular linear polarization mode LP31 mode with 98% mode conversion efficiency near 1550 nm, and further converted into the OAM±3 modes by superposition of the odd and even LP31 mode with ±π/2 phase difference. At the same time, this fiber grating can also generate LP12 mode with 90% mode conversion efficiency near 1325 nm. Then we can take the same approach to transform LP12 mode into OAM modes with angular first-order as well as radial second-order. The experimental result is consistent with the simulation result. Thus, this scheme provides an idea for generating the high-order OAM modes in all-fiber systems by using only one grating with high repeatability.
      Corresponding author: Chen Liao, liaochenchina@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505060, 61631166003, 61675081, 61735006, 61927817).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Poynting J H 1909 Proc. R. Soc. London Ser. A 82 560Google Scholar

    [3]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nat. Photonics 9 796Google Scholar

    [4]

    Vitullo D L, Leary C C, Gregg P, Smith R A, Reddy D V, Ramachandran S, Raymer M G 2017 Phys. Rev. Lett. 118 083601Google Scholar

    [5]

    Grier D 2003 Nature 424 810Google Scholar

    [6]

    Leach J, Jack B, Romero J, K Jha A, M Yao A, Frank-Arnold S, G Ireland D, W Boyd R, M Barnett S, J Padgett M 2010 Science 329 662Google Scholar

    [7]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [8]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [9]

    Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics 10 327Google Scholar

    [10]

    Cao H, Gao S C, Zhang C, Wang J, He D Y, Liu B H, Guo G C 2020 Optica 7 232Google Scholar

    [11]

    Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar

    [12]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [13]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar

    [14]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’brien J, Thompson M, Yu S 2012 Science 338 363Google Scholar

    [15]

    Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar

    [16]

    Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar

    [17]

    Fujisawa T, Saitoh K 2020 Photonics. Res. 8 1278Google Scholar

    [18]

    Ramachandran, S, Kristensen P 2013 Nanophotonics 2 455Google Scholar

    [19]

    Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [20]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar

    [21]

    Li Y, Jin L, Wu H, Gao S, Feng Y H, Li Z 2017 Photonics. J. 9 1Google Scholar

    [22]

    Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar

    [23]

    Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar

    [24]

    Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar

    [25]

    Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar

    [26]

    He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar

    [27]

    Huang H, Milione G, Lavery M P J, Xie G, Ren Y, Cao Y, Ahmed N, Nguyen T A, Nolan D A, Li M, Tur M, Alfano R R, Willner A E 2015 Sci. Rep. 5 1Google Scholar

    [28]

    Han Y, Liu Y G, Huang W, Wang Z, Guo J, Luo M 24 2016 Opt. Express 17272Google Scholar

    [29]

    Anemogiannis E, Glytsis E N, Gaylord T K 2003 J. Lightwave Technol. 21 218

    [30]

    Erdogan T 1997 J. Lightwave Technol. 15 1277

    [31]

    Jin L, Jin W, Ju J, Wang Y 2010 J. Lightwave Technol. 28 1745

    [32]

    Barshak E, Alexeyev C, Lapin B, Yavorsky M 2015 Phys. Rev. A 91 033833Google Scholar

    [33]

    Bernas M, Zolnacz K, Napiorkowski M, Statkiewicz G, Urbanczyk W 2021 Opt. Lett. 46 4446

    [34]

    Pu G Q, Yi L L, Zhang L, Luo C, Li Z H, Hu W S 2020 Light Sci. Appl. 9 13

  • 图 1  LP31奇偶模式以不同的比例和相位叠加后的模场的强度和相位图

    Figure 1.  Intensity and phase profiles of the superposed mode field in LP31 odd-even mode with different scales and phases.

    图 2  (a) 六模光纤横截面以及折射率分布; (b)—(g) 六模光纤中所支持传导的LP模式(LP01, LP11, LP21, LP02, LP31, LP12); (h) 六模光纤的色散曲线

    Figure 2.  (a) Cross-section image and transverse refractive index distribution of the 6MF; (b)–(g) fiber-supported LP modes, LP01, LP11, LP21, LP02, LP31 and LP12; (h) mode dispersion curves of the 6MF.

    图 3  基模耦合向不同的光纤导模的光栅周期随波长变化曲线

    Figure 3.  The grating pitch of fundamental mode coupling to different fiber guide mode varies with wavelength.

    图 4  基模通过光栅在不同波段转化为不同模式的示意图

    Figure 4.  Schematic representation of a fundamental mode converted to a different mode by a grating at different wavebands.

    图 5  长周期光纤光栅透射谱 (a) 光栅谐振峰对应的模式; (b) 不同的调制深度对光谱的影响; (c) 不同周期对光谱的影响; (d)不同耦合长度对光谱的影响

    Figure 5.  The transmission spectrum of long-period fiber grating: (a) The mode corresponding to the resonant peak of the grating; (b) the influence of different modulation depth on the spectrum; (c) the influence of different pitch on the spectrum; (d) the influence of different coupling length on the spectrum.

    图 6  (a)飞秒激光器刻写长周期光纤光栅实验装置; (b)光栅刻写前光纤侧视图; (c)光栅刻写后折射率调制区域侧视图

    Figure 6.  (a) Experimental setup of the fabricated LPFG by employing a femtosecond laser; (b) side view of the fiber before LPFG fabricated; (c) side view of the refractive indexation modulation region after LPFG fabricated.

    图 7  (a) 六模长周期光纤光栅透射谱的测量以及光栅前后的模场; (b)不同刻写位置光栅透射谱的测量

    Figure 7.  (a) Measured transmission spectrum of the 6 MF-LPFG and the mode profile before/after the LPFG; (b) measurement of transmission spectrum of grating at different writing positions.

    图 8  三阶OAM模式的产生和验证装置, ATT: 光衰; Col: 准直镜; BS: 光分束镜

    Figure 8.  Experimental setup for the generation and detection of the ${\text{OA}}{{\text{M}}_{ \pm 3}}$, ATT: attenuator; Col: collimator; BS: beam splitter.

    图 9  (a)(b)光栅未扭转时产生的LP31奇偶模式的模场; (c)(d)光栅经过扭转后产生的OAM±3模式的模场; (e)(f) OAM±3和参考高斯光干涉的图样

    Figure 9.  (a) (b) The intensity profiles of the generated LP31 even-odd modes before twisting the grating; (c) (d) the intensity profiles of the generated OAM±3 modes after twisting the grating; (e) (f) their interference patterns with a reference Gaussian beam.

    图 10  LP12模式和OAM±1, 2模式的强度和相位图以及两个模式之间的关系

    Figure 10.  Intensity and phase profiles of the LP12and OAM±1, 2 modes, and the relationship between these modes.

    图 11  (a)(b)光栅未扭转时产生的LP12奇偶模式的模场; (c)(d)光栅经过扭转后产生的OAM±1, 2模式的模场; (e)(f) OAM±1, 2和参考高斯光干涉的图样

    Figure 11.  (a) (b) The intensity profiles of the generated LP12even-odd modes before twisting the grating; (c) (d) the intensity profiles of the generated OAM±1, 2 modes after twisting the grating; (e) (f ) their interference patterns with a reference Gaussian beam.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Poynting J H 1909 Proc. R. Soc. London Ser. A 82 560Google Scholar

    [3]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nat. Photonics 9 796Google Scholar

    [4]

    Vitullo D L, Leary C C, Gregg P, Smith R A, Reddy D V, Ramachandran S, Raymer M G 2017 Phys. Rev. Lett. 118 083601Google Scholar

    [5]

    Grier D 2003 Nature 424 810Google Scholar

    [6]

    Leach J, Jack B, Romero J, K Jha A, M Yao A, Frank-Arnold S, G Ireland D, W Boyd R, M Barnett S, J Padgett M 2010 Science 329 662Google Scholar

    [7]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [8]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [9]

    Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics 10 327Google Scholar

    [10]

    Cao H, Gao S C, Zhang C, Wang J, He D Y, Liu B H, Guo G C 2020 Optica 7 232Google Scholar

    [11]

    Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar

    [12]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [13]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar

    [14]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’brien J, Thompson M, Yu S 2012 Science 338 363Google Scholar

    [15]

    Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar

    [16]

    Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar

    [17]

    Fujisawa T, Saitoh K 2020 Photonics. Res. 8 1278Google Scholar

    [18]

    Ramachandran, S, Kristensen P 2013 Nanophotonics 2 455Google Scholar

    [19]

    Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [20]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar

    [21]

    Li Y, Jin L, Wu H, Gao S, Feng Y H, Li Z 2017 Photonics. J. 9 1Google Scholar

    [22]

    Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar

    [23]

    Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar

    [24]

    Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar

    [25]

    Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar

    [26]

    He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar

    [27]

    Huang H, Milione G, Lavery M P J, Xie G, Ren Y, Cao Y, Ahmed N, Nguyen T A, Nolan D A, Li M, Tur M, Alfano R R, Willner A E 2015 Sci. Rep. 5 1Google Scholar

    [28]

    Han Y, Liu Y G, Huang W, Wang Z, Guo J, Luo M 24 2016 Opt. Express 17272Google Scholar

    [29]

    Anemogiannis E, Glytsis E N, Gaylord T K 2003 J. Lightwave Technol. 21 218

    [30]

    Erdogan T 1997 J. Lightwave Technol. 15 1277

    [31]

    Jin L, Jin W, Ju J, Wang Y 2010 J. Lightwave Technol. 28 1745

    [32]

    Barshak E, Alexeyev C, Lapin B, Yavorsky M 2015 Phys. Rev. A 91 033833Google Scholar

    [33]

    Bernas M, Zolnacz K, Napiorkowski M, Statkiewicz G, Urbanczyk W 2021 Opt. Lett. 46 4446

    [34]

    Pu G Q, Yi L L, Zhang L, Luo C, Li Z H, Hu W S 2020 Light Sci. Appl. 9 13

  • [1] Wu Hang, Chen Liao, Li Shuai, Du Yu-Fan, Zhang Chi, Zhang Xin-Liang. Orbital angular momentum mode femtosecond fiber laser with over 100 MHz repetition rate. Acta Physica Sinica, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] Zhao Li-Juan, Jiang Huan-Qiu, Xu Zhi-Niu. Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum. Acta Physica Sinica, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [3] Zhao Li-Juan, Zhao Hai-Ying, Xu Zhi-Niu. Design of photonic crystal fiber amplifier based on stimulated Brillouin amplification for orbital angular momentum. Acta Physica Sinica, 2022, 71(7): 074206. doi: 10.7498/aps.71.20211909
    [4] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [6] Liu Jia-Xing, Liu Xia, Zhong Shou-Dong, Wang Jian-Qiang, Zhang Da-Peng, Wang Xing-Long. Fiber gratings matching and output characteristics of fiber laser. Acta Physica Sinica, 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [7] Zhang Fa-Ye, Jiang Ming-Shun, Sui Qing-Mei, Lü Shan-Shan, Shan Jia. Acoustic emission localization technique based on fiber Bragg grating sensing network and signal feature reconstruction. Acta Physica Sinica, 2017, 66(7): 074210. doi: 10.7498/aps.66.074210
    [8] Zhang Wei-Gang, Zhang Yan-Xin, Geng Peng-Cheng, Wang Biao, Li Xiao-Lan, Wang Song, Yan Tie-Yi. Recent progress in design and fabrication of novel long-period fiber grating. Acta Physica Sinica, 2017, 66(7): 070704. doi: 10.7498/aps.66.070704
    [9] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [10] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [11] Li Yuan, Cheng Hao-Ran, Li Wei, Yu Shao-Hua, Yang Zhu. A novel simple fiber nonlinearity suppression method in fiber-optic transmission systems using an all optical phase pre-emphasis. Acta Physica Sinica, 2012, 61(19): 194205. doi: 10.7498/aps.61.194205
    [12] Qi Yue-Feng, Qiao Han-Ping, Bi Wei-Hong, Liu Yan-Yan. Heat transfer characteristics in fabrication of heat method in photonic crystal fiber grating. Acta Physica Sinica, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [13] Rao Yun-Jiang, Zeng Xiang-Kai. Theory of Fourier mode coupling for long-period fiber gratings. Acta Physica Sinica, 2010, 59(12): 8607-8614. doi: 10.7498/aps.59.8607
    [14] Rao Yun-Jiang, Zeng Xiang-Kai. Theory of Fourier mode coupling for fiber Bragg gratings. Acta Physica Sinica, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597
    [15] Zhu Tao, Shi Cui-Hua, Rao Yun-Jiang, Chiang Kin-Seng. Theory and experiment of refractive index change of long-period fiber grating induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(9): 6316-6322. doi: 10.7498/aps.58.6316
    [16] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju, Wang Jiu-Ling. Study on characteristics of a CO2-laser-induced ultra-long-period fiber grating. Acta Physica Sinica, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [17] Tan Zhong-Wei, Cao Ji-Hong, Chen Yong, Liu Yan, Ning Ti-Gang, Jian Shui-Sheng. Multi-wavelength dispersion compensator based on fiber gratings with low crosstalk. Acta Physica Sinica, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [18] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju. A high sensitivity fiber-optic torsion sensor based on a novel ultra long-period fiber grating. Acta Physica Sinica, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [19] Pei Li, Ning Ti-Gang, Li Tang-Jun, Dong Xiao-Wei, Jian Shui-Sheng. Studies on the dispersion compensation of fiber Bragg grating in high-speed opti cal communication system. Acta Physica Sinica, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [20] Han Qun, Lü Ke-Cheng, Li Jia-Fang, Li Yi-Gang, Chen Sheng-Ping. Research on a novel fiber Bragg grating thermal tuning scheme*. Acta Physica Sinica, 2004, 53(12): 4253-4256. doi: 10.7498/aps.53.4253
Metrics
  • Abstract views:  5236
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2022
  • Accepted Date:  15 November 2022
  • Available Online:  02 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回