-
The generation of orbital angular momentum (OAM) modes is very important, for they have a variety of applications such as in optical tweezers, quantum optics, and optical communication systems. Particularly, how can high-order OAM modes be generated efficiently in fibers with the advantage of low cost and compatible with fiber system? The Traditional method for first order to third order OAM is based on long period fiber grating (LPFG) fabricated by carbon dioxide laser. However, high power and large focused spot of carbon dioxide laser are unfavorable for stable and repeatable generation of higher-order OAM, which needs the LPFG with small grating pitch. In order to solve this problem, a third-order OAM mode converter based on femtosecond microfabrication is proposed and fabricated for the first time. With the advantage of 4.4 μm focused spot size near the core, lower power and lower heat absorption efficiency, this method can be more stable and promising. Therefore, we first carry out the mode filed analysis and simulate the intensity and phase profiles of the superposed mode field in LP odd-even mode on different scales and phases patterns to obtain OAM mode. Second, we use the coupled-mode theory to analyze and simulate the transmission spectrum of LPFG, which guides the setting of the grating parameters such as the grating pitch, the depth of modulation and the length of the grating. By experimental verification, an asymmetric modulated long-period fiber grating with a pitch setting to 194 μm is fabricated on a six-mode fiber. The fundamental mode can be converted into the third-order angular linear polarization mode LP31 mode with 98% mode conversion efficiency near 1550 nm, and further converted into the OAM±3 modes by superposition of the odd and even LP31 mode with ±π/2 phase difference. At the same time, this fiber grating can also generate LP12 mode with 90% mode conversion efficiency near 1325 nm. Then we can take the same approach to transform LP12 mode into OAM modes with angular first-order as well as radial second-order. The experimental result is consistent with the simulation result. Thus, this scheme provides an idea for generating the high-order OAM modes in all-fiber systems by using only one grating with high repeatability.
-
Keywords:
- orbital angular momentum /
- fiber grating /
- fiber optics components /
- fiber optics communications
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Poynting J H 1909 Proc. R. Soc. London Ser. A 82 560Google Scholar
[3] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nat. Photonics 9 796Google Scholar
[4] Vitullo D L, Leary C C, Gregg P, Smith R A, Reddy D V, Ramachandran S, Raymer M G 2017 Phys. Rev. Lett. 118 083601Google Scholar
[5] Grier D 2003 Nature 424 810Google Scholar
[6] Leach J, Jack B, Romero J, K Jha A, M Yao A, Frank-Arnold S, G Ireland D, W Boyd R, M Barnett S, J Padgett M 2010 Science 329 662Google Scholar
[7] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar
[8] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar
[9] Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics 10 327Google Scholar
[10] Cao H, Gao S C, Zhang C, Wang J, He D Y, Liu B H, Guo G C 2020 Optica 7 232Google Scholar
[11] Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar
[12] Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar
[13] Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar
[14] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’brien J, Thompson M, Yu S 2012 Science 338 363Google Scholar
[15] Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar
[16] Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar
[17] Fujisawa T, Saitoh K 2020 Photonics. Res. 8 1278Google Scholar
[18] Ramachandran, S, Kristensen P 2013 Nanophotonics 2 455Google Scholar
[19] Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[20] Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar
[21] Li Y, Jin L, Wu H, Gao S, Feng Y H, Li Z 2017 Photonics. J. 9 1Google Scholar
[22] Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar
[23] Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar
[24] Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar
[25] Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar
[26] He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar
[27] Huang H, Milione G, Lavery M P J, Xie G, Ren Y, Cao Y, Ahmed N, Nguyen T A, Nolan D A, Li M, Tur M, Alfano R R, Willner A E 2015 Sci. Rep. 5 1Google Scholar
[28] Han Y, Liu Y G, Huang W, Wang Z, Guo J, Luo M 24 2016 Opt. Express 17272Google Scholar
[29] Anemogiannis E, Glytsis E N, Gaylord T K 2003 J. Lightwave Technol. 21 218
[30] Erdogan T 1997 J. Lightwave Technol. 15 1277
[31] Jin L, Jin W, Ju J, Wang Y 2010 J. Lightwave Technol. 28 1745
[32] Barshak E, Alexeyev C, Lapin B, Yavorsky M 2015 Phys. Rev. A 91 033833Google Scholar
[33] Bernas M, Zolnacz K, Napiorkowski M, Statkiewicz G, Urbanczyk W 2021 Opt. Lett. 46 4446
[34] Pu G Q, Yi L L, Zhang L, Luo C, Li Z H, Hu W S 2020 Light Sci. Appl. 9 13
-
图 2 (a) 六模光纤横截面以及折射率分布; (b)—(g) 六模光纤中所支持传导的LP模式(LP01, LP11, LP21, LP02, LP31, LP12); (h) 六模光纤的色散曲线
Figure 2. (a) Cross-section image and transverse refractive index distribution of the 6MF; (b)–(g) fiber-supported LP modes, LP01, LP11, LP21, LP02, LP31 and LP12; (h) mode dispersion curves of the 6MF.
图 5 长周期光纤光栅透射谱 (a) 光栅谐振峰对应的模式; (b) 不同的调制深度对光谱的影响; (c) 不同周期对光谱的影响; (d)不同耦合长度对光谱的影响
Figure 5. The transmission spectrum of long-period fiber grating: (a) The mode corresponding to the resonant peak of the grating; (b) the influence of different modulation depth on the spectrum; (c) the influence of different pitch on the spectrum; (d) the influence of different coupling length on the spectrum.
图 9 (a)(b)光栅未扭转时产生的LP31奇偶模式的模场; (c)(d)光栅经过扭转后产生的OAM±3模式的模场; (e)(f) OAM±3和参考高斯光干涉的图样
Figure 9. (a) (b) The intensity profiles of the generated LP31 even-odd modes before twisting the grating; (c) (d) the intensity profiles of the generated OAM±3 modes after twisting the grating; (e) (f) their interference patterns with a reference Gaussian beam.
图 11 (a)(b)光栅未扭转时产生的LP12奇偶模式的模场; (c)(d)光栅经过扭转后产生的OAM±1, 2模式的模场; (e)(f) OAM±1, 2和参考高斯光干涉的图样
Figure 11. (a) (b) The intensity profiles of the generated LP12even-odd modes before twisting the grating; (c) (d) the intensity profiles of the generated OAM±1, 2 modes after twisting the grating; (e) (f ) their interference patterns with a reference Gaussian beam.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Poynting J H 1909 Proc. R. Soc. London Ser. A 82 560Google Scholar
[3] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nat. Photonics 9 796Google Scholar
[4] Vitullo D L, Leary C C, Gregg P, Smith R A, Reddy D V, Ramachandran S, Raymer M G 2017 Phys. Rev. Lett. 118 083601Google Scholar
[5] Grier D 2003 Nature 424 810Google Scholar
[6] Leach J, Jack B, Romero J, K Jha A, M Yao A, Frank-Arnold S, G Ireland D, W Boyd R, M Barnett S, J Padgett M 2010 Science 329 662Google Scholar
[7] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar
[8] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar
[9] Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics 10 327Google Scholar
[10] Cao H, Gao S C, Zhang C, Wang J, He D Y, Liu B H, Guo G C 2020 Optica 7 232Google Scholar
[11] Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar
[12] Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar
[13] Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar
[14] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’brien J, Thompson M, Yu S 2012 Science 338 363Google Scholar
[15] Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar
[16] Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar
[17] Fujisawa T, Saitoh K 2020 Photonics. Res. 8 1278Google Scholar
[18] Ramachandran, S, Kristensen P 2013 Nanophotonics 2 455Google Scholar
[19] Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[20] Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar
[21] Li Y, Jin L, Wu H, Gao S, Feng Y H, Li Z 2017 Photonics. J. 9 1Google Scholar
[22] Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar
[23] Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar
[24] Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar
[25] Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar
[26] He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar
[27] Huang H, Milione G, Lavery M P J, Xie G, Ren Y, Cao Y, Ahmed N, Nguyen T A, Nolan D A, Li M, Tur M, Alfano R R, Willner A E 2015 Sci. Rep. 5 1Google Scholar
[28] Han Y, Liu Y G, Huang W, Wang Z, Guo J, Luo M 24 2016 Opt. Express 17272Google Scholar
[29] Anemogiannis E, Glytsis E N, Gaylord T K 2003 J. Lightwave Technol. 21 218
[30] Erdogan T 1997 J. Lightwave Technol. 15 1277
[31] Jin L, Jin W, Ju J, Wang Y 2010 J. Lightwave Technol. 28 1745
[32] Barshak E, Alexeyev C, Lapin B, Yavorsky M 2015 Phys. Rev. A 91 033833Google Scholar
[33] Bernas M, Zolnacz K, Napiorkowski M, Statkiewicz G, Urbanczyk W 2021 Opt. Lett. 46 4446
[34] Pu G Q, Yi L L, Zhang L, Luo C, Li Z H, Hu W S 2020 Light Sci. Appl. 9 13
Catalog
Metrics
- Abstract views: 4668
- PDF Downloads: 150
- Cited By: 0