Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-band filter design based on hourglass-shaped spoof surface plasmon polaritons and interdigital capacitor structure

Luo Yu-Xuan Cheng Yong-Zhi Chen Fu Luo Hui Li Xiang-Cheng

Citation:

Dual-band filter design based on hourglass-shaped spoof surface plasmon polaritons and interdigital capacitor structure

Luo Yu-Xuan, Cheng Yong-Zhi, Chen Fu, Luo Hui, Li Xiang-Cheng
PDF
HTML
Get Citation
  • In this paper, a dual passband filter with spoof surface plasmon polaritons (SSPPs) and interdigital capacitance structure loaded on a coplanar waveguide (CPW) is proposed. First, the hourglass-shaped SSPP unit-cell structure and the interdigital capacitor structure are introduced on the coplanar waveguide transmission line to obtain high fractional bandwidth and low insertion loss passband characteristics. Then, a dual passband filter is formed by loading the interdigital capacitor loop resonator to excite the trapped waves. The simulation results show that the proposed dual passband filter has excellent upper sideband rejection and dual passband filtering performance. The fractional bandwidths of the two passbands of the design are 46.8% (1.49–2.40 GHz) and 15.1% (2.98–3.63 GHz), respectively, which can achieve more than –40 dB rejection in a range of 4.77–7.48 GHz. The upper cutoff frequency and lower cutoff frequency of the two passbands can be independently regulated by changing the structural parameters of the proposed filter. In order to gain a more in-depth understanding of the operating principle of the dual passband filter, the corresponding dispersion curves and electric field distribution, LC equivalent circuit analysis are given. Finally, the prototype of the designed filter is fabricated according to the optimized parameter values. The experimental results are in good agreement with the simulation ones, indicating that the proposed dual-passband filter is of great importance in implementing microwave integrated circuits .
      Corresponding author: Cheng Yong-Zhi, chengyz@wust.edu.cn
    • Funds: Supported by Hubei Provincial Natural Science Foundation Innovation Group Project (Grant No. 2020CFA038) and Hubei Provincial Key R&D Project (Grant No. 2020BAA028).
    [1]

    Zhang R, Zhu L 2013 IEEE Trans. Microwave Theory Tech. 61 1820Google Scholar

    [2]

    Gomez-Garcia R, Yang L, Munoz-Ferreras J M, Psychogiou D 2019 IEEE Microw. Wireless Compon. Lett. 29 453

    [3]

    Mansour R R, Laforge P D 2016 IEEE MTT-S International Microwave Symposium San Francisco, May 22–27, 2016 p1

    [4]

    Qu L L, Zhang Y H, Li Q, Liu J W, Fan Y 2020 International Conference on Microwave and Millimeter Wave Technology Shanghai, September 20–23, 2020 p1

    [5]

    Amari S, Bekheit M 2008 IEEE Trans. Microwave Theory Tech. 56 1938Google Scholar

    [6]

    Nocella V, Pelliccia L, Tomassoni C, Sorrentino R 2016 IEEE Microw. Wireless Compon. Lett. 26 310Google Scholar

    [7]

    Bartlett C, Hoft M 2021 Electron. Lett. 57 328Google Scholar

    [8]

    Li K, Kang G Q, Liu H, Zhao Z Y 2020 Microsyst. Technol. 26 913Google Scholar

    [9]

    Duarte G, Silva A, Oliveira C, Dmitriev V, Melo G, Castro W 2021 IEEE MTT-S International Microwave and Optoelectronics Conference Fortaleza, October 24–27, 2021 p1

    [10]

    Miek D, Boe P, Kamrath F, Hoft M 2021 IEEE MTT-S International Microwave Filter Workshop Perugia, November 17–19, 2021 p73

    [11]

    Litvintsev S, Rozenko S 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering Lviv, August 26–28, 2021 p121

    [12]

    Li D, Wang J A, Liu Y, Chen Z 2020 IEEE Access 8 25588Google Scholar

    [13]

    张德伟, 王树兴, 刘庆, 周东方, 张毅, 吕大龙, 吴瑛 2018 电子学报 46 387Google Scholar

    Zhang D W, Wang S X, Liu Q, Zhou D F, Zhang Y, Lv D L, Wu Y 2018 Chin. J. Electron. 46 387Google Scholar

    [14]

    Chen R S, Zhu L, Lin J Y, Wong S W, He Y 2020 IEEE Microw. Wireless Compon. Lett. 30 573Google Scholar

    [15]

    朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar

    Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar

    [16]

    石光明, 马震远, 麦智荣, 林智勇 2020 电子学报 48 1641Google Scholar

    Shi G M, Ma Z Y, Mai Z Y, Lin Z Y 2020 Chin. J. Electron. 48 1641Google Scholar

    [17]

    苏林, 马力, 孙炳文, 郭圣明 2014 物理学报 10 104302Google Scholar

    Su L, Ma L, Sun B W, Guo S M 2014 Acta Phys. Sin. 10 104302Google Scholar

    [18]

    盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 10 108402Google Scholar

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 10 108402Google Scholar

    [19]

    Jaiswal R K, Pandit N, Pathak N P 2019 IEEE Photon. Technol. Lett. 31 1293Google Scholar

    [20]

    Feng W, Feng Y, Yang W, Che W, Xue Q 2019 IEEE Trans. Plasma Sci. 47 2832Google Scholar

    [21]

    吴梦, 梁西银, 颜昌林, 祁云平 2019 激光与光电子学进展 56 202417Google Scholar

    Meng W, Liang X Y, Yan C L, Qi Y P 2019 Laser Optoelectron. Prog. 56 202417Google Scholar

    [22]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Tech. El. 20 591Google Scholar

    [23]

    Shang H, Liu Y, Li Z, Tian Y 2020 Int. J. RF Microw. C. E. 32 e22440

    [24]

    Wang Z X, Zhang H C, Lu J, Xu P, Wu L W, Wu R Y, Cui T J 2018 J. Phys. D Appl. Phys. 52 025107Google Scholar

    [25]

    Chen Z M, Liu Y H, Wang J, Li Y, Zhu J H, Jiang W, Shen X P, Zhao L, Cui T J 2019 IEEE Access 8 4311Google Scholar

    [26]

    Yan S, Wang J, Kong X, Xu R, Chen Z M, Ma J Y, Zhao L 2022 IEEE Photonics Technol. Lett. 34 375Google Scholar

    [27]

    Peng Y, Zhang W X 2010 Microw. Opt. Techn. Lett. 52 166Google Scholar

    [28]

    Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar

    [29]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2022 Plasmonics 18 165Google Scholar

  • 图 1  提出的宽带带通滤波器原型的几何结构 (a)整体结构; (b)沙漏型SSPPs单元结构; (c)交指电容结构

    Figure 1.  Geometry of the proposed broadband bandpass filter prototype: (a) The whole structure; (b) the hourglass-shaped SSPPs unit cell structure; (c) interdigital structure.

    图 2  仿真S参数 (a)SSPPs单元中间不加载交指电容结构; (b)设计的宽带带通滤波器

    Figure 2.  Simulated S-parameters: (a) Without loading the cross-finger capacitor structure in the middle of SSPPs unit; (b) the designed broadband bandpass filter.

    图 3  加载了IDCLLRs的双带通滤波器几何结构 (a)整体结构; (b) IDCLLRs结构及其等效电路

    Figure 3.  Geometry of the proposed dual-bandpass filter with loaded IDCLLRs: (a) The whole structure, (b) the IDCLLRs and its equivalent circuit diagram.

    图 4  (a)不同指长lr的IDCLLRs的传输系数; (b)加载了IDCLLRs的双带通滤波器的仿真S参数

    Figure 4.  (a) The simulated transmission coefficients of the IDCLLRs with different finger lengths lr, (b) the simulated S-parameters of the proposed dual-bandpass filter.

    图 5  加载了两个IDCLLRs的双带通滤波器的等效电路模型

    Figure 5.  Equivalent circuit of the proposed dual-bandpass filter with two IDCLLRs.

    图 6  EM仿真和LC电路仿真的S参数的对比

    Figure 6.  Comparison of S-parameters obtained from EM simulation and LC circuit simulation.

    图 7  沙漏形SSPPs单元结构的色散曲线 (a)不同高度a; (b)不同宽度b

    Figure 7.  Dispersion diagrams of the hourglass-shaped SSPP unit-cell with different (a) height a, (b) width b.

    图 8  不同 (a) SSPPs单元高度a, (b) SSPPs单元宽度b, (c)IDCLLRs的指长lr和(d) SSPPs单元交指电容结构间隙宽度s的模拟传输系数.

    Figure 8.  Simulated transmission coefficients with different (a) SSPPs unit-cell heights a, (b) SSPPs unit-cell widths b, (c) finger lengths lr of IDCLLRs, and (d) SSPPs unit-cell interdigital structure gap widths s.

    图 9  分别在 (a) 1.9 GHz, (b) 2.7 GHz和(c) 3.5 GHz时, 所提出双带通滤波器的金属层的模拟电场(Ex)分布

    Figure 9.  The simulated electric field (Ex) distributions of the metallic layer of the proposed dual-bandpass filter at (a) 1.9 GHz, (b) 2.7 GHz, and (c) 3.5 GHz, respectively.

    图 10  (a) 加工的双通带滤波器样品的照片; (b)仿真与测试的传输、反射系数的对比

    Figure 10.  (a) The photograph of the fabricated microwave dual-bandpass filter sample; (b) the comparisons of the simulated and measured transmission and reflection coefficients.

    表 1  拟议的双通带滤波器的尺寸参数

    Table 1.  Dimensional parameters of the proposed dual-bandpass filter.

    参数w1w2w3gg1g2abc
    值/mm3.014.960.00.10.10.34.17.514.5
    参数lwslslrlwlxlylz
    值/mm1.50.20.20.13.00.17.82.31.0
    DownLoad: CSV

    表 2  仿真与测试数据的对比

    Table 2.  Simulation versus measured data.

    f0/GHzILMAX/dBRLMAX/dBFBW/%带外抑制
    仿真(Sim.)1.95/3.31–1.25/–1.20–14.3/–10.846.7/19.6–40 dB@ 4.77—7.48 GHz
    测量(Mea.)2.01/3.15–1.31/–2.50–14.1/–11.151.7/19.0–35 dB@ 4.30—7.70 GHz
    DownLoad: CSV

    表 3  先进的双通带滤波器对比

    Table 3.  State-of-the-art dual-bandpass filter comparison.

    参考文献f0/GHzIL/dBFBW/%带外抑制是否可调
    [2]1.57/2.381.2/2.09.9/6.5–30 dB@ 2.6—5.1 GHz
    [4]4.16/7.220.4/0.748.1/34.9–20 dB@ 8.6—9.0 GHz
    [8]2.30/3.201.1/1.711.3/9.4–20 dB@ 3.4—4.0 GHz
    [12]2.40/5.200.4/1.010.6/13.5–15 dB@ 5.8—12.4 GHz
    [14]0.19/0.271.75/1.11.6/2.1–25 dB@ 0.27—0.33 GHz
    本文工作2.01/3.151.3/2.551.7/19.0–35 dB@ 4.3—7.7 GHz
    DownLoad: CSV
  • [1]

    Zhang R, Zhu L 2013 IEEE Trans. Microwave Theory Tech. 61 1820Google Scholar

    [2]

    Gomez-Garcia R, Yang L, Munoz-Ferreras J M, Psychogiou D 2019 IEEE Microw. Wireless Compon. Lett. 29 453

    [3]

    Mansour R R, Laforge P D 2016 IEEE MTT-S International Microwave Symposium San Francisco, May 22–27, 2016 p1

    [4]

    Qu L L, Zhang Y H, Li Q, Liu J W, Fan Y 2020 International Conference on Microwave and Millimeter Wave Technology Shanghai, September 20–23, 2020 p1

    [5]

    Amari S, Bekheit M 2008 IEEE Trans. Microwave Theory Tech. 56 1938Google Scholar

    [6]

    Nocella V, Pelliccia L, Tomassoni C, Sorrentino R 2016 IEEE Microw. Wireless Compon. Lett. 26 310Google Scholar

    [7]

    Bartlett C, Hoft M 2021 Electron. Lett. 57 328Google Scholar

    [8]

    Li K, Kang G Q, Liu H, Zhao Z Y 2020 Microsyst. Technol. 26 913Google Scholar

    [9]

    Duarte G, Silva A, Oliveira C, Dmitriev V, Melo G, Castro W 2021 IEEE MTT-S International Microwave and Optoelectronics Conference Fortaleza, October 24–27, 2021 p1

    [10]

    Miek D, Boe P, Kamrath F, Hoft M 2021 IEEE MTT-S International Microwave Filter Workshop Perugia, November 17–19, 2021 p73

    [11]

    Litvintsev S, Rozenko S 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering Lviv, August 26–28, 2021 p121

    [12]

    Li D, Wang J A, Liu Y, Chen Z 2020 IEEE Access 8 25588Google Scholar

    [13]

    张德伟, 王树兴, 刘庆, 周东方, 张毅, 吕大龙, 吴瑛 2018 电子学报 46 387Google Scholar

    Zhang D W, Wang S X, Liu Q, Zhou D F, Zhang Y, Lv D L, Wu Y 2018 Chin. J. Electron. 46 387Google Scholar

    [14]

    Chen R S, Zhu L, Lin J Y, Wong S W, He Y 2020 IEEE Microw. Wireless Compon. Lett. 30 573Google Scholar

    [15]

    朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar

    Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar

    [16]

    石光明, 马震远, 麦智荣, 林智勇 2020 电子学报 48 1641Google Scholar

    Shi G M, Ma Z Y, Mai Z Y, Lin Z Y 2020 Chin. J. Electron. 48 1641Google Scholar

    [17]

    苏林, 马力, 孙炳文, 郭圣明 2014 物理学报 10 104302Google Scholar

    Su L, Ma L, Sun B W, Guo S M 2014 Acta Phys. Sin. 10 104302Google Scholar

    [18]

    盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 10 108402Google Scholar

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 10 108402Google Scholar

    [19]

    Jaiswal R K, Pandit N, Pathak N P 2019 IEEE Photon. Technol. Lett. 31 1293Google Scholar

    [20]

    Feng W, Feng Y, Yang W, Che W, Xue Q 2019 IEEE Trans. Plasma Sci. 47 2832Google Scholar

    [21]

    吴梦, 梁西银, 颜昌林, 祁云平 2019 激光与光电子学进展 56 202417Google Scholar

    Meng W, Liang X Y, Yan C L, Qi Y P 2019 Laser Optoelectron. Prog. 56 202417Google Scholar

    [22]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Tech. El. 20 591Google Scholar

    [23]

    Shang H, Liu Y, Li Z, Tian Y 2020 Int. J. RF Microw. C. E. 32 e22440

    [24]

    Wang Z X, Zhang H C, Lu J, Xu P, Wu L W, Wu R Y, Cui T J 2018 J. Phys. D Appl. Phys. 52 025107Google Scholar

    [25]

    Chen Z M, Liu Y H, Wang J, Li Y, Zhu J H, Jiang W, Shen X P, Zhao L, Cui T J 2019 IEEE Access 8 4311Google Scholar

    [26]

    Yan S, Wang J, Kong X, Xu R, Chen Z M, Ma J Y, Zhao L 2022 IEEE Photonics Technol. Lett. 34 375Google Scholar

    [27]

    Peng Y, Zhang W X 2010 Microw. Opt. Techn. Lett. 52 166Google Scholar

    [28]

    Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar

    [29]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2022 Plasmonics 18 165Google Scholar

  • [1] Sun Shu-Peng, Cheng Yong-Zhi, Luo Hui, Chen Fu, Yang Ling-Ling, Li Xiang-Cheng. Miniaturized electronically controlled notched band filter based on spoof surface plasmon polaritons. Acta Physica Sinica, 2024, 73(3): 034101. doi: 10.7498/aps.73.20231447
    [2] Wang Yue, Wang Lun, Sun Bai-Xun, Lang Peng, Xu Yang, Zhao Zhen-Long, Song Xiao-Wei, Ji Bo-Yu, Lin Jing-Quan. Near-field control of gold nanostructure under joint action of surface plasmon polariton and incident light. Acta Physica Sinica, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] Sun Shu-Peng, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Compact broadband bandpass filter with wide stopband based on halberd-shaped spoof surface plasmon polariton. Acta Physica Sinica, 2023, 72(6): 064101. doi: 10.7498/aps.72.20222291
    [4] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [5] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] Yin Yun-Qiao, Wu Hong-Wei. Magnetic mirror metasurfaces based on spoof surface plasmonic structures. Acta Physica Sinica, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [7] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei. Omnidirectional cloaking based on spoof surface plasmonic structure. Acta Physica Sinica, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] Wang Chao, Li Yong-Feng, Shen Yang, Feng Mao-Chang, Wang Jia-Fu, Ma Hua, Zhang Jie-Qiu, Qu Shao-Bo. Design of dual-band-pass frequency selective structure based on spoof surface plasmon polariton. Acta Physica Sinica, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [12] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [13] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [15] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [16] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] Bao Di, Shen Xiao-Peng, Cui Tie-Jun. Progress of terahertz metamaterials. Acta Physica Sinica, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [18] Wang Pei-Pei, Yang Chao-Jie, Li Jie, Tang Peng, Lin Feng, Zhu Xing. Polarization properties of plasmonic color filters comprised of arrays of subwavelength size holes on Au films. Acta Physica Sinica, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [19] Xu Xin-He, Xiao Shao-Qiu, Gan Yue-Hong, Fu Chong-Fang, Wang Bing-Zhong. Analysis of symmetrical, periodic negative-permeability metamaterial using interdigital capacitance loading. Acta Physica Sinica, 2012, 61(12): 124103. doi: 10.7498/aps.61.124103
    [20] Chen Jian-Jun, Li Zhi, Zhang Jia-Sen, Gong Qi-Huang. Surface plasmon polariton modulator based on electro-optic polymer. Acta Physica Sinica, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
Metrics
  • Abstract views:  4969
  • PDF Downloads:  116
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2022
  • Accepted Date:  02 December 2022
  • Available Online:  09 February 2023
  • Published Online:  20 February 2023

/

返回文章
返回