Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In situ study of light emission from SiO2 irradiated by 645 MeV Xe35+ ions

Xu Qiu-Mei Gou Jie Zhang Chong-Hong Yang Zhi-Hu Wang Yan-Yu Han Xu-Xiao Li Jian-Yang

Citation:

In situ study of light emission from SiO2 irradiated by 645 MeV Xe35+ ions

Xu Qiu-Mei, Gou Jie, Zhang Chong-Hong, Yang Zhi-Hu, Wang Yan-Yu, Han Xu-Xiao, Li Jian-Yang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Silicon dioxide (SiO2) is an important component of nuclear reactor optical fiber and is also a candidate material for wast solidification. Owing to its special physical and chemical characteristics, it is used in many different technology fields like optics, electronics, energy orspace. Swift heavy ion irradiation can modify the crystal structure and optical property of optical material SiO2. Swift heavy ions deposit their energy mainly by inelastic interaction. Highly ionized lattice atoms may be formed along the trajectory, and a fraction of their electrical energy can be converted directly into the kinetic energy of the ions. The irradiation experiment is performed with Xeq+ ions at the irradiation terminal of the sector-focused cyclotron at heavy-ion research facility in Lanzhou (HIRFL). The on-line spectral measurement experiment is carried out during irradiation. In the darkroom, the UV-visible light emission from the target is focused into optical fiber by a collimating lens, and then is analyzed with the Sp-2558 spectrometer equipped with a 1200 g/mm optical grating blazed at 500 nm. In the present work, SiO2 single crystals are irradiated with 93–609 MeV Xeq+ ions with a dose in a range of 1×1011–3×1011 ions/cm2. During irradiation, the emission spectra, in a range of 200–800 nm, from SiO2 irradiated by 93, 245, 425 and 609 MeV Xeq+ ions, are obtained. Two emission bands centered at 461 and 631 nm are observed. These emission bands are produced by Frenkel exciton radiation de-excitation and their intensities are closely related to the irradiated ion energy and radiation dose. The results show that the light intensity increases with the electron energy loss index increasing. And owing to crystal damage caused by ion irradiation, the intensity of emission spectrum decreases with the augment of irradiation dose. Ion loses its energy throughout the ion track via Sn and Se interacting with target atoms and electrons respectively, and the energy lost by the ion is estimated by using SRIM code. The SRIM simulated ion ranges and recoil atom distribution, target ionization (energy loss to target electrons), damage production in SiO2 are presented. Based on the energy deposition process, the emission bands related to the crystal structure itself are discussed. It indicates that electron energy loss plays a leading role in the process of light emission. In-situ measurement of the optical emission is of great significance in studying the irradiation modification and can help to understand the process of crystal damage caused by ion irradiation.
      Corresponding author: Zhang Chong-Hong, c.h.zhang@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104463, U1532262).
    [1]

    Yang P, An YL, Yang D Y, Li Y H, Chen J M 2020 Ceram. Int. 46 21367Google Scholar

    [2]

    Li Y H, Wen J, Wang Y Q, Wang Z G, Tang M, Valdez J A, Sickafus K E 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 287 130Google Scholar

    [3]

    Devine R A B 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 378Google Scholar

    [4]

    Zhu Z, Jung P, Langenscheidt E 1997 J. Non-Cryst. Solids 217 173Google Scholar

    [5]

    Zhu Z Y, Jung P 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 269Google Scholar

    [6]

    Saito K, Ikushima A J 2002 J. Appl. Phys. 91 4886Google Scholar

    [7]

    Wang R P, Tai N, Saitio K, Ikushima A J 2005 J. Appl. Phys. 98 023701Google Scholar

    [8]

    Xue S W, Zu X T, Su H Q, Zheng W G, Xia X, Hong D, Yang C R 2007 Chin. Phys. 16 1119Google Scholar

    [9]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar

    [10]

    Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y 1990 Phys. Rev. B 41 7828Google Scholar

    [11]

    Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 219 1027

    [12]

    Bettger K (姜东兴, 刘洪涛 译) 1982 重离子物理实验方法 (北京: 原子能出版社) 第149页

    Bettger K (translated by Jiang Dongxing, Liu Hongtao) 1982 Experimental Methods in Heavy Ion Physics (Beijing: Atomic Energy Press) p149 (in Chinese)

    [13]

    Stevens-Kalceff M A 2011 J. Phys. D: Appl. Phys. 44 255402Google Scholar

    [14]

    Kaddouri A, Ashraf I, El Fqih M A, Targaoui H, El Boujlaïdi A, Berrada K 2009 Appl. Surf. Sci. 256 116Google Scholar

    [15]

    Song Y, Zhang C H, Yang Y T, Gou J, Zhang L Q, He D Y 2013 Opt. Mater. 35 1057Google Scholar

    [16]

    Patra P, Shah S, Toulemonde M, Sulania I, Singh F 2022 Radiat. Eff. Defects Solids 177 513Google Scholar

    [17]

    Meftah A, Brisard F, Costantini J M, Dooryhee E, Hage-Ali M, Hervieu M, Stoquert J P, Studer F, Toulemonde M 1994 Phys. Rev. B 49 12457Google Scholar

    [18]

    Kluth P, Schnohr C S, Pakarinen O H, Djurabekova F, Sprouster D J, Giulian R, Ridgway M C, Byrne A P, Trautmann C, Cookson D J, Nordlund K, Toulemonde M 2008 Phys. Rev. Lett. 101 175503Google Scholar

    [19]

    Toulemonde M, Weber W J, Li G S, Shutthanandan V, Kluth P, Yang T F, Wang Y G, Zhang Y W 2011 Phys. Rev. B 83 054106Google Scholar

    [20]

    Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar

    [21]

    Liu C B, Wang Z G 2011 Chin. J. Lumin. 32 608Google Scholar

    [22]

    Udelson B J, Creedon J E, French J C 1957 J. Appl. Phys. 28 717Google Scholar

    [23]

    Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Chin. J. Semicond. 17 789

  • 图 1  中能辐照终端束线系统示意图

    Figure 1.  Schematic diagram of intermediate energy irradiation terminal beam system.

    图 2  快重离子辐照固体引起光发射测量装置示意图

    Figure 2.  A schematic diagram of the experimental setup for the measurement of optical emission from the solid induced by swift heavy ions.

    图 3  245 MeV Xeq+离子辐照SiO2发射光谱

    Figure 3.  The optical emission spectrum from SiO2 irradiated by 245 MeV Xeq+ ions.

    图 4  93—609 MeV Xeq+离子辐照SiO2发射谱461 nm处的光强度随离子动能的变化

    Figure 4.  The intensity of emission bands of centered at 461 nm from SiO2 irradiated by 93–609 MeV Xeq+ ions as a function of kinetic energy.

    图 5  利用SRIM 程序计算93, 245, 425和609 MeV Xeq+离子在SiO2中的电子能损(Se)随辐照深度的变化

    Figure 5.  Variation of electronic energy losses (Se) with the SiO2 depth for 93, 245, 425 and 609 MeV Xeq+ ion irradiation using SRIM code.

    图 6  利用SRIM 程序计算93, 245, 425和609 MeV Xeq+ 离子在SiO2中的核能损(Sn)随辐照深度的变化

    Figure 6.  Variation of nuclear electronic energy losses (Sn) with the SiO2 depth for 93, 245, 425 and 609 MeV Xeq+ ion irradiation using SRIM code.

    图 7  SRIM模拟93 (a), 245 (b), 425 (c)和 609 (d) MeV Xeq+ 离子在SiO2中的离子射程和反冲原子分布

    Figure 7.  SRIM simulated plot of ion ranges and recoil atom distribution of SiO2 target by 93(a), 245(b), 425(c) and 609 (d) MeV Xeq+ ion

    图 10  SRIM模拟93 (a), 245 (b), 425 (c) 和 609 (d) MeV Xeq+ 离子在SiO2中的移位损伤以及Si和O原子空位

    Figure 10.  SRIM simulated plot of displacement damage of SiO2 target and vacancies of Si and O atoms with target depth by 93 (a), 245 (b), 425 (c) and 609 (d) MeV Xeq+ ion.

    图 8  SRIM模拟93 (a), 245 (b), 425 (c)和609 (d) MeV Xeq+ 离子在SiO2中的电离

    Figure 8.  SRIM simulated plot of target ionization (energy loss to target electrons) of SiO2 target by 93 (a), 245 (b), 425 (c) and 609(d) MeV Xeq+ ion.

    图 9  SRIM模拟93 (a), 245 (b), 425 (c)和 609 (d) MeV Xeq+ 离子在SiO2中的移位损伤

    Figure 9.  SRIM simulated plot of displacement damage of SiO2 target by 93 (a), 245 (b), 425 (c) and 609 (d) MeV Xeq+ ion.

    图 11  93—609 MeV Xeq+离子辐照SiO2发射谱461 nm处的光强度随电子能损的变化

    Figure 11.  The intensity of emission bands of centered at 461 nm from SiO2 irradiated by 93–609 MeV Xeq+ ions as a function of electronic energy loss.

    图 12  609 MeV Xeq+离子辐照SiO2发射谱

    Figure 12.  The optical emission spectra from SiO2 irradiate by 609 MeV Xeq+ ions.

    表 1  不同能量Xeq+离子辐照SiO2植入深度、电子能损和核能损

    Table 1.  the penetrating depth and, its electronic energy loss and nuclear energy loss of Xeq+ ion in SiO2.

    Ion energy
    /MeV
    Projected
    range/μm
    Electronic energy
    loss/(×104 keV·μm–1)
    Nuclear energy loss
    /(×10 keV·μm–1)
    60960.691.2581.518
    42546.141.2602.063
    24531.591.1833.283
    9317.540.92257.271
    DownLoad: CSV
  • [1]

    Yang P, An YL, Yang D Y, Li Y H, Chen J M 2020 Ceram. Int. 46 21367Google Scholar

    [2]

    Li Y H, Wen J, Wang Y Q, Wang Z G, Tang M, Valdez J A, Sickafus K E 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 287 130Google Scholar

    [3]

    Devine R A B 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 378Google Scholar

    [4]

    Zhu Z, Jung P, Langenscheidt E 1997 J. Non-Cryst. Solids 217 173Google Scholar

    [5]

    Zhu Z Y, Jung P 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 269Google Scholar

    [6]

    Saito K, Ikushima A J 2002 J. Appl. Phys. 91 4886Google Scholar

    [7]

    Wang R P, Tai N, Saitio K, Ikushima A J 2005 J. Appl. Phys. 98 023701Google Scholar

    [8]

    Xue S W, Zu X T, Su H Q, Zheng W G, Xia X, Hong D, Yang C R 2007 Chin. Phys. 16 1119Google Scholar

    [9]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar

    [10]

    Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y 1990 Phys. Rev. B 41 7828Google Scholar

    [11]

    Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 219 1027

    [12]

    Bettger K (姜东兴, 刘洪涛 译) 1982 重离子物理实验方法 (北京: 原子能出版社) 第149页

    Bettger K (translated by Jiang Dongxing, Liu Hongtao) 1982 Experimental Methods in Heavy Ion Physics (Beijing: Atomic Energy Press) p149 (in Chinese)

    [13]

    Stevens-Kalceff M A 2011 J. Phys. D: Appl. Phys. 44 255402Google Scholar

    [14]

    Kaddouri A, Ashraf I, El Fqih M A, Targaoui H, El Boujlaïdi A, Berrada K 2009 Appl. Surf. Sci. 256 116Google Scholar

    [15]

    Song Y, Zhang C H, Yang Y T, Gou J, Zhang L Q, He D Y 2013 Opt. Mater. 35 1057Google Scholar

    [16]

    Patra P, Shah S, Toulemonde M, Sulania I, Singh F 2022 Radiat. Eff. Defects Solids 177 513Google Scholar

    [17]

    Meftah A, Brisard F, Costantini J M, Dooryhee E, Hage-Ali M, Hervieu M, Stoquert J P, Studer F, Toulemonde M 1994 Phys. Rev. B 49 12457Google Scholar

    [18]

    Kluth P, Schnohr C S, Pakarinen O H, Djurabekova F, Sprouster D J, Giulian R, Ridgway M C, Byrne A P, Trautmann C, Cookson D J, Nordlund K, Toulemonde M 2008 Phys. Rev. Lett. 101 175503Google Scholar

    [19]

    Toulemonde M, Weber W J, Li G S, Shutthanandan V, Kluth P, Yang T F, Wang Y G, Zhang Y W 2011 Phys. Rev. B 83 054106Google Scholar

    [20]

    Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar

    [21]

    Liu C B, Wang Z G 2011 Chin. J. Lumin. 32 608Google Scholar

    [22]

    Udelson B J, Creedon J E, French J C 1957 J. Appl. Phys. 28 717Google Scholar

    [23]

    Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Chin. J. Semicond. 17 789

  • [1] Yin Hao, Song Tong, Peng Xiong-Gang, Zhang Peng, Yu Run-Sheng, Chen Zhe, Cao Xing-Zhong, Wang Bao-Yi. Small angle X-ray scattering and positron annihilation spectroscopy of polyethyleneimine functionalized ordered mesoporous silica SBA-15 microstructure. Acta Physica Sinica, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [2] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [3] Cui Tao, Wang Kang-Ni, Gao Kai-Ge, Qian Lin-Yong. Enhanced dye lasing emission by guided-mode resonance grating with mesoporous silica as spacing layer. Acta Physica Sinica, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [4] Lu Hai-Lin, Duan Fang-Li. Motion behavior of graphene sheets and friction characteristics between the interfaces of silicon-based materials. Acta Physica Sinica, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [5] Yu Yang, Zhao Yong-Tao, Wang Yu-Yu, Wang Xing, Cheng Rui, Zhou Xian-Ming, Li Yong-Feng, Liu Shi-Dong, Lei Yu, Sun Yuan-Bo, Zeng Li-Xia. Secondary electron emission from carbon Foils by Ne2+ near Bohr velocity. Acta Physica Sinica, 2013, 62(15): 157901. doi: 10.7498/aps.62.157901
    [6] Electron-beam induced abnormal expansion in a silica-shelled gallium microball-nanotube structure (Retracted Article). Acta Physica Sinica, 2012, 61(18): 186102. doi: 10.7498/aps.61.186102
    [7] Zhang Lei, Ye Hui, Huangfu You-Rui, Liu Xu. Investigation of Ge quantum dots formation on SiO2 substratethrough annealing process. Acta Physica Sinica, 2011, 60(7): 076103. doi: 10.7498/aps.60.076103
    [8] Chen Xue-Feng, Qi Kai-Tian, Li Bing, Sheng Yong, Zhang Yan, Yang Chuan-Lu. Density functional theory study of silica clusters (SiO2)n-(n≤7). Acta Physica Sinica, 2010, 59(7): 4598-4601. doi: 10.7498/aps.59.4598
    [9] Wu Dong-Lan, Wan Hui-Jun, Xie An-Dong, Cheng Xin-Lu, Yang Xiang-Dong. Study of the partition functions of SiO2 molecules. Acta Physica Sinica, 2009, 58(11): 7410-7413. doi: 10.7498/aps.58.7410
    [10] Zhang Ying-Chen, Zhu Hai-Yan, Wu Hong-Yan, Qiu Yi-Ping. Effects of helium plasma treatment on tensile behaviour of nano-SiO2 sol-gel coating T300 carbon fiber. Acta Physica Sinica, 2009, 58(13): 298-S305. doi: 10.7498/aps.58.298
    [11] Zhang Ying-Chen, Zhu Hai-Yan, Huang Jing-Nan, Zou Jing, Wu Hong-Yan, Qiu Yi-Ping. Effects of oxygen plasma treatment on tensile deformation of nano-SiO2 sol-gel coating ultra-high molecular weight polyethylene filaments. Acta Physica Sinica, 2009, 58(13): 292-S297. doi: 10.7498/aps.58.292
    [12] Xiao Zhong-Yin, Wang Ting-Yun, Luo Wen-Yun, Wang Zi-Hua. Mechanism of E′ center formed by irradiation with high energy particles in silica glasses. Acta Physica Sinica, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [13] Ding Hong-Lin, Liu Kui, Wang Xiang, Fang Zhong-Hui, Huang Jian, Yu Lin-Wei, Li Wei, Huang Xin-Fan, Chen Kun-Ji. Effect of control oxide on the performance of nanocrystalline silicon based double-barrier floating gate memory structure. Acta Physica Sinica, 2008, 57(7): 4482-4486. doi: 10.7498/aps.57.4482
    [14] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [15] Wang Chang-Shun, Pan Xu, Urisu Tsuneo. Synchrotron radiation stimulated etching of SiO2 thin films. Acta Physica Sinica, 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [16] Sun You-Mei, Liu Jie, Zhang Chong-Hong, Wang Zhi-Guang, Jin Yun-Fan, Duan Jing-Lai, Song Yin. Electronic energy loss of the latent track in heavy ion-irradiated polyimide. Acta Physica Sinica, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [17] Sheng Yong-Gang, Xu Yao, Li Zhi-Hong, Wu Dong, Sun Yu-Han, Wu Zhong-Hua. Determination of fractal dimensions of silicon dioxide xerogel by means of gas-adsorption. Acta Physica Sinica, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [18] Yi Gui-Yun, Dong Peng, Wang Xiao-Dong, Liu Li-Xia, Chen Sheng-Li. Synthesis and characterization of three-dimensionally ordered macroporous polystyrene. Acta Physica Sinica, 2004, 53(10): 3311-3315. doi: 10.7498/aps.53.3311
    [19] Tang Xiao-Yan, Zhang Yi-Men, Zhang He-Ming, Zhang Yu-Ming, Dai Xian-Ying, Hu Hui-Yong. 3UCVD deposition SiO2 on SiC wafer and its C-V measurement. Acta Physica Sinica, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [20] LOU ZHI-DONG, XU ZHENG, XU CHUN-XIANG, YU LEI, TENG FENG, XU XU-RONG. HIGH-FIELD ELECTRON TRANSPORT OF AMORPHOUS SiO2 AS ACCELERATING LAYER IN THE LAYERED OPTIMIZATION TFEL. Acta Physica Sinica, 1998, 47(1): 139-145. doi: 10.7498/aps.47.139
Metrics
  • Abstract views:  4533
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2022
  • Accepted Date:  14 November 2022
  • Available Online:  09 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回