-
Owing to its advantages of high specific surface area, large pore volume, adjustable pore size, good thermal stability and relatively low cost, SBA-15 has a wide range of application prospects in adsorption, separation, catalysis, nanomaterials and other fields. And the use of organic functional groups to modify SBA-15 has become one of the hot spots of research on materials, but the introduction of organic functional groups will inevitably affect the pore structure of material, affecting its performance. Therefore, how to more comprehensively characterize the pore structure of material has received much attention. In this work, small angle X-ray scattering (SAXS) technique is used to characterize the pore structure of PEI/SBA-15 mesoporous molecular sieve. The pore structure and periodicity information of PEI/SBA-15 are obtained by using correlation function and string length distribution theory, and compared with those obtained by positron annihilation lifetime spectroscopy (PALS) technique. The results show that the periodic structure of PEI/SBA-15 mesoporous molecular sieve does not change significantly with the increase of PEI mass percent, and the pore size of PEI/SBA-15 mesoporous molecular sieve only decreases from 8.3 nm to 7.6 nm by the chord length distribution function. Two long-life components, τ3 and τ4, are obtained by PALS, and τ3 reflects the random pores structure in SBA-15 matrix, while τ4 denotes the size of SBA-15 hexagonal pores. Compared with the results of SAXS, the mesoporous pore size obtained by PALS technique shows the same trend. By combining SAXS technique and PALS technique, the evolution of material microstructure can be revealed in more depth, thus providing a unique method for studying the structural characterization of functional nanocomposites in the future.
-
Keywords:
- small angle X-ray scattering /
- SBA-15 molecular sieve /
- positron annihilation lifetime spectroscopy
[1] 彭雪婷, 吕昊东, 张贤 2022 气候变化研究进展 18 580
Peng X T, Lyu H D Zhang X 2022 Adv. Clim. Change Res. 18 580
[2] Baena-Moreno F M, Rodriguez-Galan M, Vega F, Alonso-Farinas B, Arenas L F V, Navarrete B 2019 Energ Source Part A 41 1403Google Scholar
[3] Hermida L, Agustian J, Abdullah A Z, Mohamed A R 2019 Open Chem. 17 1000Google Scholar
[4] Li L, Zhao N, Wei W, Sun Y H 2013 Fuel 108 112Google Scholar
[5] Zhang Z E, Pan S Y, Li H, Cai J C, Olabi A G, Anthony E J Manovic V 2020 Renew. Sust. Energ. Rev. 125 17
[6] Samanta A, Zhao A, Shimizu G K H, Sarkar P, Gupta R 2012 Ind. Eng. Chem. Res. 51 1438Google Scholar
[7] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548Google Scholar
[8] Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H 2020 Nanoscale 12 11333Google Scholar
[9] Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande M B 2020 Bull. Chem. Soc. Jpn. 93 1459Google Scholar
[10] Wang H, Liu C J 2011 Appl. Catal. B 106 672Google Scholar
[11] Ledesma B, Juarez J, Mazario J, Domine M, Beltramone A 2021 Catal. Today 360 147Google Scholar
[12] Li D L, Chai K G, Yao X D, Zhou L Q, Wu K Y, Huang Z H, Yan J T, Qin X Z, Wei W, Ji H B 2021 J. Colloid Interface Sci. 583 100Google Scholar
[13] Gang D, Ahmad Z U, Lian Q Y, Yao L G, Zappi M E 2021 Chem. Eng. J. 403 20
[14] Wu B H, Zhang S C, Tang T, Xu Y, Liu Y, Wu Z H 2010 Acta Phys. -Chim. Sin. 26 2217Google Scholar
[15] Mohamed H F M, El-Sayed A M A, Abd-Elsadek G G 2001 Polym. Degrad. Stabil. 71 93
[16] Debye A, Bueche A M J 1949 Appl. Phys. 20 518Google Scholar
[17] Burger C, Ruland W 2001 Acta Crystallogr. Sect. A 57 482Google Scholar
[18] Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar
[19] Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar
[20] Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar
[21] Wiertel M, Surowiec Z, Budzynski M, Gac W 2013 Nukleonika 58 245
[22] 王少阶, 陈志权, 王波, 吴亦初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第130页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p130 (in Chinese)
[23] Griffith T C, Heyland G R, Lines K S, Twomey T R 1978 J Phys. B-at Mol. Opt. 11 L743Google Scholar
-
-
[1] 彭雪婷, 吕昊东, 张贤 2022 气候变化研究进展 18 580
Peng X T, Lyu H D Zhang X 2022 Adv. Clim. Change Res. 18 580
[2] Baena-Moreno F M, Rodriguez-Galan M, Vega F, Alonso-Farinas B, Arenas L F V, Navarrete B 2019 Energ Source Part A 41 1403Google Scholar
[3] Hermida L, Agustian J, Abdullah A Z, Mohamed A R 2019 Open Chem. 17 1000Google Scholar
[4] Li L, Zhao N, Wei W, Sun Y H 2013 Fuel 108 112Google Scholar
[5] Zhang Z E, Pan S Y, Li H, Cai J C, Olabi A G, Anthony E J Manovic V 2020 Renew. Sust. Energ. Rev. 125 17
[6] Samanta A, Zhao A, Shimizu G K H, Sarkar P, Gupta R 2012 Ind. Eng. Chem. Res. 51 1438Google Scholar
[7] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548Google Scholar
[8] Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H 2020 Nanoscale 12 11333Google Scholar
[9] Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande M B 2020 Bull. Chem. Soc. Jpn. 93 1459Google Scholar
[10] Wang H, Liu C J 2011 Appl. Catal. B 106 672Google Scholar
[11] Ledesma B, Juarez J, Mazario J, Domine M, Beltramone A 2021 Catal. Today 360 147Google Scholar
[12] Li D L, Chai K G, Yao X D, Zhou L Q, Wu K Y, Huang Z H, Yan J T, Qin X Z, Wei W, Ji H B 2021 J. Colloid Interface Sci. 583 100Google Scholar
[13] Gang D, Ahmad Z U, Lian Q Y, Yao L G, Zappi M E 2021 Chem. Eng. J. 403 20
[14] Wu B H, Zhang S C, Tang T, Xu Y, Liu Y, Wu Z H 2010 Acta Phys. -Chim. Sin. 26 2217Google Scholar
[15] Mohamed H F M, El-Sayed A M A, Abd-Elsadek G G 2001 Polym. Degrad. Stabil. 71 93
[16] Debye A, Bueche A M J 1949 Appl. Phys. 20 518Google Scholar
[17] Burger C, Ruland W 2001 Acta Crystallogr. Sect. A 57 482Google Scholar
[18] Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar
[19] Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar
[20] Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar
[21] Wiertel M, Surowiec Z, Budzynski M, Gac W 2013 Nukleonika 58 245
[22] 王少阶, 陈志权, 王波, 吴亦初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第130页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p130 (in Chinese)
[23] Griffith T C, Heyland G R, Lines K S, Twomey T R 1978 J Phys. B-at Mol. Opt. 11 L743Google Scholar
Catalog
Metrics
- Abstract views: 3925
- PDF Downloads: 77
- Cited By: 0