Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Omnidirectional cloaking based on spoof surface plasmonic structure

Quan Jia-Qi Sheng Zong-Qiang Wu Hong-Wei

Citation:

Omnidirectional cloaking based on spoof surface plasmonic structure

Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei
PDF
HTML
Get Citation
  • Surface plasmons include surface plasmon polaritons and localized surface plasmons, which are electromagnetic wave confined at the interface of the metal and dielectric. Spoof surface plasmonic structure has many special optical properties, which is of great significance for designing new-generation optical elements. In order to transfer the features of the surface plasmon polaritons and localized surface plasmons to microwave-terahertz region, Pendry et al. (Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847) have proposed the spoof surface plasmon polaritons based on a metal structure with grooved stripes. In this paper, a hollow textured perfect electric conductor cylinder with periodic cut-through slits structure is designed to suppress the light scattering of the object in any direction and achieve the effect of omnidirectional cloaking while the transverse magnetic polarization wave propagates along the x direction. And the locations of the electrical and magnetic modes can be freely modulated by tailoring the structural geometric construction. In order to find the physical mechanism behind the abnormal phenomenon, through theoretical analysis and numerical simulation, we find that the strong scattering suppression of this spoof surface plasmonic polariton structure is caused by the interference between the background wave and Mie scattering of the structural unit, and it can be equivalent to a ring metamaterial due to the special structural design, in order to achieve the omnidirectional cloaking. It implies that we can hide objects in metal strips due to the fact that the metal in the microwave-to-terahertz region is equivalent to a perfect electrical conductor. This opens up a new way to analyzing the physical cloaking and optical response of spoof surface plasmonic polaritons structure. In addition, we also analyze the influence of the structure on the movement law of the scattering spectrum under different structural parameters. This enables us to have an in-depth understanding of the influence of structural parameters on the structural scattering spectrum. Our results can be applied to the microwave-to-terahertz region and a variety of advanced optic devices such as radars, cloaking coatings, sensors and detectors.
      Corresponding author: Sheng Zong-Qiang, zqsheng@aust.edu.cn ; Wu Hong-Wei, hwwu@aust.edu.cn
    • Funds: Project supported by the National Laboratory of Solid State Microstructures, China (Grant No. M31041), the National Natural Science Foundation of China (Grant No. 11847002), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA21).
    [1]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [2]

    Cummer S. A, Popa B, Schuring D, Smith D. R, Pendry J 2006 Phys. Rev. E 74 036621Google Scholar

    [3]

    Cai W, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photon. 1 224Google Scholar

    [4]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [5]

    Monticone F, Argyropoulos C, Alù A 2013 Phys. Rev. Lett. 110 113901Google Scholar

    [6]

    Kort-Kamp W J M, Rosa F S S, Pinheiro F A, Farina C 2013 Phys. Rev. Lett. 111 215504Google Scholar

    [7]

    Leonhardt U, Philbin T G 2006 New J. Phys. 8 247Google Scholar

    [8]

    Chen P Y, Soric J, Alù A 2012 Adv. Mater. 24 OP281

    [9]

    Pendry J B, Schuring D, Simith D R 2006 Science 312 1780Google Scholar

    [10]

    Schuring D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [11]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [12]

    Zharova N A, Shadriviv I V, Zharov A A, Kivshar Y S 2012 Opt. Express 20 14954Google Scholar

    [13]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [14]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [15]

    Anker J N, Hall W P, Lyandres O, Shah N, Zhao J, Duyne R P V 2008 Nat. Mater. 7 442Google Scholar

    [16]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [17]

    Sheng X P, Cui T J 2014 Laser Photon. Rev. 8 137Google Scholar

    [18]

    Gao Z, Gao F, Xu H, Zhang Y, Zhang B L 2016 Opt. Lett. 41 2181Google Scholar

    [19]

    Alù A, Engheta N 2009 Phys. Rev. Lett. 102 233901Google Scholar

    [20]

    Wu H W, Chen H J, Fan H Y, Li Y, Fang X W 2017 Opt. Lett. 42 791Google Scholar

    [21]

    李梦君, 方晖, 李小明, 袁小聪 2016 物理学报 65 057302Google Scholar

    Li M J, Fang H, Li X M, Yuan X C 2016 Acta Phys. Sin. 65 057302Google Scholar

    [22]

    高东宝, 曾新吾 2012 物理学报 61 184301Google Scholar

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301Google Scholar

    [23]

    汪会波, 罗孝阳, 董建峰 2015 物理学报 64 154102Google Scholar

    Wang H B, Luo X Y, Dong J F 2015 Acta Phys. Sin. 64 154102Google Scholar

    [24]

    王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar

    Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar

    [25]

    Wu H W, Han Y Z, Chen H J, Zhou Y, Li X C, Gao J, Sheng Z Q 2017 Opt. Lett. 42 4521Google Scholar

    [26]

    Wu H W, Chen H J, Xu H F, Fan R H, Li Y 2018 Sci. Rep. 8 8817Google Scholar

    [27]

    Wu H W, Li Yang, Chen H J, Sheng Z Q, Jing H, Fan R H, Peng R W 2019 Appl. Nano Mater. 2 1045Google Scholar

    [28]

    Rybin M V, Samusev K B, Sinev I S, Semouchkin G, Semouchkina E, Kivshar Y S, Limonov M F 2013 Opt. Express 21 30107Google Scholar

    [29]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [30]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543Google Scholar

    [31]

    Liu X, Zhao Q, Lan C, Zhou J 2013 Appl. Phys. Lett. 103 031910Google Scholar

    [32]

    Wu H W, Wang F, Dong Y Q, Shu F Z, Zhang K, Peng R W, Xiong X, Wang M 2015 Opt. Express 23 32087Google Scholar

    [33]

    van de Hulst H C 1957 Light Scattering: by Small Particles (New York: Courier Dover Publications) p23

    [34]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: Wiley-VCH) p40

    [35]

    Stratton J A 2007 Electromagnetic Theory (New York: Wiley) p67

    [36]

    Rybin M V, Samusev K B, Kapitanova P V, Filonov D S, Belov P A, Kivshar Y S, Limonov M F 2017 Phys. Rev. B 95 165119Google Scholar

    [37]

    Fu T, Gao X, Xiao G L, Sun T Y, Li Q, Zhang F B, Chen Y H, Li H O, Deng Z L 2019 Opt. Mater. Express 9 944Google Scholar

    [38]

    Deng Z L, Li X P, Fu T, Wang G P 2017 IEEE Photon. J. 9 4801107

    [39]

    Deng Z L, Yogesh N, Chen X D, Chen W J, Dong J W, Ouyang Z B, Wang G P 2015 Sci. Rep. 5 18461

  • 图 1  (a)人工局域等离激元的结构设计; (b)放大结构的基本构成模块; (c)等效的超构材料; (d)超构材料空间介电常数分布; (e)磁导率的空间分布

    Figure 1.  (a) Structural design of spoof localized surface plasmonic; (b) the basic building blocks of the amplifier structure; (c) equivalent metamaterial; (d) spatial dielectric constant distribution of metamaterial; (e) the spatial distribution of permeability.

    图 2  (a)计算的空心人工局域表面等离激元结构的散射谱, 其中浅蓝色区域代表低阶模式, 砖红色区域代表高阶模式; (b)−(d)低阶模式区域中三个共振峰的场分布, 分别对应于磁偶极模式、电偶极模式和电四极模式

    Figure 2.  (a) Calculated scattering cross section spectrum for the textured perfect electric conductor hollow cylinder. The light blue and brick red area represent the lower and higher order mode, respectively. (b)−(d) The field distribution of three resonant peaks in the lower mode region correspond to magnetic dipole mode, electric dipole mode and electric quadrupole mode.

    图 3  计算的形变的具有完美电导体纹理的空心硅盘结构的散射谱 (a)改变内半径从0.1 m至0.2 m; (b)改变外半径从0.6 m至0.7 m; (c)裂缝a和周期d的比值从0.2至0.4; (d)电介质折射率大小从3改变至5

    Figure 3.  Calculated scattering cross section of the textured perfect electric conductor hollow cylinder for changing: (a) Changing the inner radius from 0.1 m to 0.2 m; (b) outer radius from 0.6 m to 0.7 m; (c) the rations between the width of slit a and period d from a/d = 0.2 to a/d = 0.4; (d) the refractive index of the dielectric from n = 3 to n = 5.

    图 4  (a)计算的r = 0.3, R = 0.7时具有完美电导体纹理的空心硅盘结构的散射谱; (b)在B位置时的场分布图, (c)和(d)分别对应着A点和C点的场分布图, 图中内嵌的图为红色圆圈内结构的放大

    Figure 4.  (a) Calculated scattering cross section of the textured perfect electric conductor hollow cylinder at r = 0.3 m and R = 0.7 m; (b) field distribution at position B, (c) and (d) correspond to the field distribution of point A and point C respectively, the figure embedded in (b)−(d) shows the enlargement of the structure in the red circle.

  • [1]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [2]

    Cummer S. A, Popa B, Schuring D, Smith D. R, Pendry J 2006 Phys. Rev. E 74 036621Google Scholar

    [3]

    Cai W, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photon. 1 224Google Scholar

    [4]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [5]

    Monticone F, Argyropoulos C, Alù A 2013 Phys. Rev. Lett. 110 113901Google Scholar

    [6]

    Kort-Kamp W J M, Rosa F S S, Pinheiro F A, Farina C 2013 Phys. Rev. Lett. 111 215504Google Scholar

    [7]

    Leonhardt U, Philbin T G 2006 New J. Phys. 8 247Google Scholar

    [8]

    Chen P Y, Soric J, Alù A 2012 Adv. Mater. 24 OP281

    [9]

    Pendry J B, Schuring D, Simith D R 2006 Science 312 1780Google Scholar

    [10]

    Schuring D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [11]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [12]

    Zharova N A, Shadriviv I V, Zharov A A, Kivshar Y S 2012 Opt. Express 20 14954Google Scholar

    [13]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [14]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [15]

    Anker J N, Hall W P, Lyandres O, Shah N, Zhao J, Duyne R P V 2008 Nat. Mater. 7 442Google Scholar

    [16]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [17]

    Sheng X P, Cui T J 2014 Laser Photon. Rev. 8 137Google Scholar

    [18]

    Gao Z, Gao F, Xu H, Zhang Y, Zhang B L 2016 Opt. Lett. 41 2181Google Scholar

    [19]

    Alù A, Engheta N 2009 Phys. Rev. Lett. 102 233901Google Scholar

    [20]

    Wu H W, Chen H J, Fan H Y, Li Y, Fang X W 2017 Opt. Lett. 42 791Google Scholar

    [21]

    李梦君, 方晖, 李小明, 袁小聪 2016 物理学报 65 057302Google Scholar

    Li M J, Fang H, Li X M, Yuan X C 2016 Acta Phys. Sin. 65 057302Google Scholar

    [22]

    高东宝, 曾新吾 2012 物理学报 61 184301Google Scholar

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301Google Scholar

    [23]

    汪会波, 罗孝阳, 董建峰 2015 物理学报 64 154102Google Scholar

    Wang H B, Luo X Y, Dong J F 2015 Acta Phys. Sin. 64 154102Google Scholar

    [24]

    王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar

    Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar

    [25]

    Wu H W, Han Y Z, Chen H J, Zhou Y, Li X C, Gao J, Sheng Z Q 2017 Opt. Lett. 42 4521Google Scholar

    [26]

    Wu H W, Chen H J, Xu H F, Fan R H, Li Y 2018 Sci. Rep. 8 8817Google Scholar

    [27]

    Wu H W, Li Yang, Chen H J, Sheng Z Q, Jing H, Fan R H, Peng R W 2019 Appl. Nano Mater. 2 1045Google Scholar

    [28]

    Rybin M V, Samusev K B, Sinev I S, Semouchkin G, Semouchkina E, Kivshar Y S, Limonov M F 2013 Opt. Express 21 30107Google Scholar

    [29]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [30]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543Google Scholar

    [31]

    Liu X, Zhao Q, Lan C, Zhou J 2013 Appl. Phys. Lett. 103 031910Google Scholar

    [32]

    Wu H W, Wang F, Dong Y Q, Shu F Z, Zhang K, Peng R W, Xiong X, Wang M 2015 Opt. Express 23 32087Google Scholar

    [33]

    van de Hulst H C 1957 Light Scattering: by Small Particles (New York: Courier Dover Publications) p23

    [34]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: Wiley-VCH) p40

    [35]

    Stratton J A 2007 Electromagnetic Theory (New York: Wiley) p67

    [36]

    Rybin M V, Samusev K B, Kapitanova P V, Filonov D S, Belov P A, Kivshar Y S, Limonov M F 2017 Phys. Rev. B 95 165119Google Scholar

    [37]

    Fu T, Gao X, Xiao G L, Sun T Y, Li Q, Zhang F B, Chen Y H, Li H O, Deng Z L 2019 Opt. Mater. Express 9 944Google Scholar

    [38]

    Deng Z L, Li X P, Fu T, Wang G P 2017 IEEE Photon. J. 9 4801107

    [39]

    Deng Z L, Yogesh N, Chen X D, Chen W J, Dong J W, Ouyang Z B, Wang G P 2015 Sci. Rep. 5 18461

  • [1] Luo Yu-Xuan, Cheng Yong-Zhi, Chen Fu, Luo Hui, Li Xiang-Cheng. Dual-band filter design based on hourglass-shaped spoof surface plasmon polaritons and interdigital capacitor structure. Acta Physica Sinica, 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [2] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [3] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [4] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [8] Yin Yun-Qiao, Wu Hong-Wei. Magnetic mirror metasurfaces based on spoof surface plasmonic structures. Acta Physica Sinica, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [9] Zhou Yi, Chen Rui, Chen Wen-Jie, Ma Yun-Gui. Advances in spatial analog optical computing devices. Acta Physica Sinica, 2020, 69(15): 157803. doi: 10.7498/aps.69.20200283
    [10] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [11] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [13] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [14] Yao Yao, Shen Yue, Hao Jia-Ming, Dai Ning. Antireflection coatings based on subwavelength artificial engineering microstructures. Acta Physica Sinica, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [15] Wang Chao, Li Yong-Feng, Shen Yang, Feng Mao-Chang, Wang Jia-Fu, Ma Hua, Zhang Jie-Qiu, Qu Shao-Bo. Design of dual-band-pass frequency selective structure based on spoof surface plasmon polariton. Acta Physica Sinica, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [16] Yang Peng, Han Tian-Cheng. Polarization-controlled dual-band broadband infrared absorber. Acta Physica Sinica, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [17] Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang. Subwavelength electromagnetics below the diffraction limit. Acta Physica Sinica, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [18] Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang. Meta-antenna: principle, device and application. Acta Physica Sinica, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [19] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [20] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
Metrics
  • Abstract views:  10024
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2019
  • Accepted Date:  18 April 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回